Preparation and Characterization of Carbon Paste Electrode Bulk-Modified with Multiwalled Carbon Nanotubes and Its Application in a Sensitive Assay of Antihyperlipidemic Simvastatin in Biological Samples
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
LO1401
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31200496
PubMed Central
PMC6630724
DOI
10.3390/molecules24122215
PII: molecules24122215
Knihovny.cz E-resources
- Keywords
- biological sample, carbon paste electrode, mechanism study, multiwalled carbon nanotube, scanning electrochemical microscopy, simvastatin determination,
- MeSH
- Electrodes * MeSH
- Humans MeSH
- Microscopy, Electron, Scanning MeSH
- Nanotubes, Carbon chemistry ultrastructure MeSH
- Simvastatin chemistry MeSH
- Carbon chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Nanotubes, Carbon MeSH
- Simvastatin MeSH
- Carbon MeSH
Determination of an antihyperlipidemic drug simvastatin (SIM) was carried out using a carbon paste electrode bulk-modified with multiwalled carbon nanotubes (MWCNT-CPE). Scanning electrochemical microscopy (SECM), scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used for the characterization of the prepared electrodes. Different electrodes were prepared varying in mass percentage of MWCNTs to find out the optimum amount of MWCNTs in the paste. The MWCNT-CPE in which the mass percentage of MWCNTs was 25% (w/w) was found as the optimum. Then, the prepared electrode was used in a mechanistic study and sensitive assay of SIM in pharmaceutical dosage form and a spiked human plasma sample using differential pulse voltammetry (DPV). The prepared electrode shows better sensitivity compared to the bare carbon paste and glassy carbon electrode (GCE). The detection limit and the limit of quantification were calculated to be 2.4 × 10-7 and 8 × 10-7, respectively. The reproducibility of the electrode was confirmed by the low value of the relative standard deviation (RSD% = 4.8%) when eight measurements of the same sample were carried out. Determination of SIM in pharmaceutical dosage form was successfully performed with a bias of 0.3% and relative recovery rate of 99.7%. Furthermore, the human plasma as a more complicated matrix was spiked with a known concentration of SIM and the spiking recovery rate was determined with the developed method to be 99.5%.
See more in PubMed
Pedersen T.R., Tobert J.A. Simvastatin: A review. Expert Opin. Pharmacother. 2004;5:2583–2596. doi: 10.1517/14656566.5.12.2583. PubMed DOI
Zhao J.J., Xie I.H., Yang A.Y., Roadcap B.A., Rogers J. Quantitation of simvastatin and its β-hydroxy acid in human plasma by liquid–liquid cartridge extraction and liquid chromatography/tandem mass spectrometry. J. Mass Spectrom. 2000;35:1133–1143. doi: 10.1002/1096-9888(200009)35:9<1133::AID-JMS42>3.0.CO;2-X. PubMed DOI
Liao J.K. Effects of statins on 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition beyond low-density lipoprotein cholesterol. Am. J. Cardiol. 2005;96:24–33. doi: 10.1016/j.amjcard.2005.06.009. PubMed DOI PMC
Willey J.Z., Elkind M.S. 3-Hydroxy-3-methylglutaryl–Coenzyme A Reductase Inhibitors in the Treatment of Central Nervous System Diseases. Arch. Neurol. 2010;67:1062–1067. doi: 10.1001/archneurol.2010.199. PubMed DOI PMC
Subhan M., Faryal R., Macreadie I. Exploitation of Aspergillus terreus for the Production of Natural Statins. J. Fungi. 2016;2:13. doi: 10.3390/jof2020013. PubMed DOI PMC
Bonetti P., Lerman L., Napoli C., Lerman A. Statin effects beyond lipid lowering—Are they clinically relevant? Eur. Heart J. 2003;24:225–248. doi: 10.1016/S0195-668X(02)00419-0. PubMed DOI
Ramkumar S., Raghunath A., Raghunath S. Statin therapy: Review of safety and potential side effects. Acta Cardiol. Sin. 2016;32:631. PubMed PMC
Björkhem-Bergman L., Lindh J.D., Bergman P. What is a relevant statin concentration in cell experiments claiming pleiotropic effects? Brit. J. Clin. Pharmacol. 2011;72:164–165. doi: 10.1111/j.1365-2125.2011.03907.x. PubMed DOI PMC
Bu D., Tarrio M., Grabie N., Zhang Y., Yamazaki H., Stavrakis G., Maganto-Garcia E., Pepper-Cunningham Z., Jarolim P., Aikawa M. Statin-induced Kruppel-like factor 2 expression in human and mouse T cells reduces inflammatory and pathogenic responses. J. Clin. Investig. 2010;120:1961–1970. doi: 10.1172/JCI41384. PubMed DOI PMC
Chow O.A., von Köckritz-Blickwede M., Bright A.T., Hensler M.E., Zinkernagel A.S., Cogen A.L., Gallo R.L., Monestier M., Wang Y., Glass C.K. Statins enhance formation of phagocyte extracellular traps. Cell Host Microbe. 2010;8:445–454. doi: 10.1016/j.chom.2010.10.005. PubMed DOI PMC
Youssef S., Stüve O., Patarroyo J.C., Ruiz P.J., Radosevich J.L., Hur E.M., Bravo M., Mitchell D.J., Sobel R.A., Steinman L. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature. 2002;420:78. doi: 10.1038/nature01158. PubMed DOI
Carlucci G., Mazzeo P., Biordi L., Bologna M. Simultaneous determination of simvastatin and its hydroxy acid form in human plasma by high-performance liquid chromatography with UV detection. J. Pharmaceut. Biomed. 1992;10:693–697. doi: 10.1016/0731-7085(92)80098-8. PubMed DOI
Jemal M., Ouyang Z., Powell M.L. Direct-injection LC–MS–MS method for high-throughput simultaneous quantitation of simvastatin and simvastatin acid in human plasma. J. Pharmaceut. Biomed. 2000;23:323–340. doi: 10.1016/S0731-7085(00)00309-5. PubMed DOI
Ochiai H., Uchiyama N., Imagaki K., Hata S., Kamei T. Determination of simvastatin and its active metabolite in human plasma by column-switching high-performance liquid chromatography with fluorescence detection after derivatization with 1-bromoacetylpyrene. J. Chromatogr. B. 1997;694:211–217. doi: 10.1016/S0378-4347(97)00091-1. PubMed DOI
Yang H., Feng Y., Luan Y. Determination of Simvastatin in human plasma by liquid chromatography–mass spectrometry. J. Chromatogr. B. 2003;785:369–375. doi: 10.1016/S1570-0232(02)00800-0. PubMed DOI
Takano T., Abe S., Hata S. A selected ion monitoring method for quantifying simvastatin and its acid form in human plasma, using the ferroceneboronate derivative. Biol. Mass Spectr. 1990;19:577–581. doi: 10.1002/bms.1200190910. PubMed DOI
Srinivasu M., Raju A.N., Reddy G.O. Determination of lovastatin and simvastatin in pharmaceutical dosage forms by MEKC. J. Pharmaceut. Biomed. 2002;29:715–721. doi: 10.1016/S0731-7085(02)00128-0. PubMed DOI
El-Din M.M.S., Attia K.A., Nassar M.W., Kaddah M.M. Colorimetric determination of simvastatin and lovastatin in pure form and in pharmaceutical formulations. Spectrochim. Acta A. 2010;76:423–428. doi: 10.1016/j.saa.2010.04.015. PubMed DOI
Al-Ghamdi A.F., Hefnawy M.M., El-Shabrawy Y. Non-extractive ultra-trace determination of simvastatin in biological fluids by voltammetric method via complexation with cadmium. Dig. J. Nanomater. Biostruct. 2014;9:355–368.
Nigović B., Komorsky-Lovrić Š., Devčić D. Rapid voltammetric identification and determination of simvastatin at trace levels in pharmaceuticals and biological fluid. Croatica Chem. Acta. 2008;81:453–459.
Coruh Ö., Özkan S. Determination of the antihyperlipidemic simvastatin by various voltammetric techniques in tablets and serum samples. Int. J. Pharmaceut. Sci. 2006;61:285–290. PubMed
Deepa M., Mamatha G., Naik Y.A., Sherigara B., Manjappa S., Vijaya B. Electrochemical studies of simvastatin at glassy carbon electrode and immobilized by sodium dodecyl sulfate surfactant. J. Chem. Pharm. Res. 2012;4:2803–2816.
Zhang H., Hu C., Wu S., Hu S. Enhanced Oxidation of Simvastatin at a Multi-Walled Carbon Nanotubes-Dihexadecyl Hydrogen Phosphate Composite Modified Glassy Carbon Electrode and the Application in Determining Simvastatin in Pharmaceutical Dosage Forms. Electroanalysis. 2005;17:749–754. doi: 10.1002/elan.200403137. DOI
Svancara I., Kalcher K., Walcarius A., Vytras K. Electroanalysis with Carbon Paste Electrodes. CRC Press; Boca Raton, FL, USA: 2012.
Akhoundian M., Alizadeh T., Ganjali M.R., Norouzi P. Ultra-trace detection of methamphetamine in biological samples using FFT-square wave voltammetry and nano-sized imprinted polymer/MWCNTs -modified electrode. Talanta. 2019;200:115–123. doi: 10.1016/j.talanta.2019.02.027. PubMed DOI
Rajaei M., Foroughi M.M., Jahani S., Shahidi Zandi M., Hassani Nadiki H. Sensitive detection of morphine in the presence of dopamine with La3+ doped fern-like CuO nanoleaves/MWCNTs modified carbon paste electrode. J. Mol. Liq. 2019;284:462–472. doi: 10.1016/j.molliq.2019.03.135. DOI
Teixeira M.d.C., Felix F.S., Thomasi S.S., Magriotis Z.M., da Silva J.M., Okumura L.L., Saczk A.A. Voltammetric determination of organic nitrogen compounds in environmental samples using carbon paste electrode modified with activated carbon. Microchem. J. 2019;148:66–72. doi: 10.1016/j.microc.2019.04.038. DOI
Khrizanforov M.N., Arkhipova D.M., Shekurov R.P., Gerasimova T.P., Ermolaev V.V., Islamov D.R., Miluykov V.A., Kataeva O.N., Khrizanforova V.V., Sinyashin O.G., et al. Novel paste electrodes based on phosphonium salt room temperature ionic liquids for studying the redox properties of insoluble compounds. J. Solid State Electrochem. 2015;19:2883–2890. doi: 10.1007/s10008-015-2901-0. DOI
Musameh M., Wang J., Merkoci A., Lin Y. Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem. Commun. 2002;4:743–746. doi: 10.1016/S1388-2481(02)00451-4. DOI
Fanjul-Bolado P., Queipo P., Lamas-Ardisana P.J., Costa-García A. Manufacture and evaluation of carbon nanotube modified screen-printed electrodes as electrochemical tools. Talanta. 2007;74:427–433. doi: 10.1016/j.talanta.2007.07.035. PubMed DOI
Ashrafi A.M., Kurbanoglu S., Vytřas K., Uslu B., Ozkan S.A. Electrochemical mechanism and sensitive assay of antiretroviral drug Abacavir in biological sample using multiwalled carbon nanotube modified pyrolytic graphite electrode. J. Electroanal. Chem. 2014;712:178–184. doi: 10.1016/j.jelechem.2013.11.012. DOI
Mikysek T., Švancara I., Kalcher K., Bartoš M., Vytřas K., Ludvík J. New approaches to the characterization of carbon paste electrodes using the ohmic resistance effect and qualitative carbon paste indexes. Anal. Chem. 2009;81:6327–6333. doi: 10.1021/ac9004937. PubMed DOI
Friedrich J., Žužek M., Benčina M., Cimerman A., Štrancar A., Radež I. High-performance liquid chromatographic analysis of mevinolin as mevinolinic acid in fermentation broths. J. Chromatogr. A. 1995;704:363–367. doi: 10.1016/0021-9673(95)00096-6. DOI
Bard A.J., Faulkner L.R., Leddy J., Zoski C.G. Electrochemical Methods: Fundamentals and Applications. Volume 2. Wiley; New York, NY, USA: 1980. pp. 26–52.
Tafel J. Über die Polarisation bei kathodischer Wasserstoffentwicklung. Zeitschrift für Physikalische Chemie. 1905;50:641–712. doi: 10.1515/zpch-1905-5043. DOI
Nečas D., Klapetek P.J.O.P. Gwyddion: An open-source software for SPM data analysis. Open Phys. 2012;10:181–188. doi: 10.2478/s11534-011-0096-2. DOI
Bard A.J., Mirkin M.V. Scanning Electrochemical Microscopy. CRC Press; Boca Raton, FL, USA: 2012.