Retrospective Analysis of Bone Metabolism in Patients on Waiting List for Simultaneous Pancreas-Kidney Transplantation
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31218231
PubMed Central
PMC6536959
DOI
10.1155/2019/5143021
Knihovny.cz E-zdroje
- MeSH
- absorpční fotometrie MeSH
- antropometrie MeSH
- bederní obratle patologie MeSH
- chronické selhání ledvin komplikace chirurgie MeSH
- denzitometrie MeSH
- diabetes mellitus 1. typu komplikace MeSH
- dospělí MeSH
- index tělesné hmotnosti MeSH
- kosti a kostní tkáň metabolismus MeSH
- kostní denzita * MeSH
- krček femuru MeSH
- lidé středního věku MeSH
- lidé MeSH
- metabolické nemoci kostí MeSH
- osteoporóza patologie MeSH
- pooperační komplikace MeSH
- retrospektivní studie MeSH
- rizikové faktory MeSH
- seznamy čekatelů * MeSH
- transplantace ledvin metody MeSH
- transplantace slinivky břišní metody MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Posttransplant osteoporosis, which evolves from preexisting bone pathologies, represents a serious complication with deteriorating consequences. The aim of our study was to evaluate epidemiological data on bone mineral density (BMD) in subjects with type 1 diabetes (T1DM) in advanced stages of diabetic nephropathy indicated for simultaneous pancreas-kidney transplantation (SPK). We retrospectively compiled biochemical and densitometrical data from 177 patients with T1DM at CKD (chronic kidney disease) stages G4-G5 (115 men, 62 women, median age 40 yr, diabetes duration 23 yr) enrolled on waiting list for SPK for the first time between the years 2011 and 2016. Median Z-scores were as follows: lumbar spine (LS): -0.8 [interquartile range -1.75 to 0.1]; total hip (TH): -1.2 [-1.75 to -0.6]; femoral neck (FN): -1.2 [-1.9 to -0.7]; and distal radius (DR): -0.8 [-1.4 to -0.1]. We noted a gender difference in LS, with worse results for men (-1.1 vs. -0.3) even after adjusting for BMI (body mass index) and glomerular filtration (p < 0.001). Osteoporotic and osteopenic ranges (based on T-scores) for all major sites were 27.7% and 56.5%, respectively, with similar results across both genders. Women had a significantly higher proportion of normal BMD in LS than men (67.7 vs. 49.4%, p < 0.05). Patients with T1DM at CKD stages G4-G5 exhibited serious BMD impairment despite their young age. Men surprisingly displayed lower Z-scores and higher percentages of pathological BMD values in LS than women did. The introduction of adequate preventive measures during the advanced stages of diabetic nephropathy to prevent bone loss is recommended.
Zobrazit více v PubMed
Weber D. R., Schwartz G. Epidemiology of skeletal health in type 1 diabetes. Current Osteoporosis Reports. 2016;14(6):327–336. doi: 10.1007/s11914-016-0333-0. PubMed DOI PMC
Khan T. S., Fraser L. A. Type 1 diabetes and osteoporosis: from molecular pathways to bone phenotype. Journal of Osteoporosis. 2015;2015:8. doi: 10.1155/2015/174186.174186 PubMed DOI PMC
Zhukouskaya V. V., Eller-Vainicher C., Shepelkevich A. P., Dydyshko Y., Cairoli E., Chiodini I. Bone health in type 1 diabetes: focus on evaluation and treatment in clinical practice. Journal of Endocrinological Investigation. 2015;38(9):941–950. doi: 10.1007/s40618-015-0284-9. PubMed DOI
Narres M., Claessen H., Droste S., et al. The incidence of end-stage renal disease in the diabetic (compared to the non-diabetic) population: a systematic review. PLoS One. 2016;11(1, article e0147329) doi: 10.1371/journal.pone.0147329. PubMed DOI PMC
Nathan D. M., Bayless M., Cleary P., et al. Diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: advances and contributions. Diabetes. 2013;62(12):3976–3986. doi: 10.2337/db13-1093. PubMed DOI PMC
Robertson R. P., Sutherland D. E., Lanz K. J. Normoglycemia and preserved insulin secretory reserve in diabetic patients 10-18 years after pancreas transplantation. Diabetes. 1999;48(9):1737–1740. doi: 10.2337/diabetes.48.9.1737. PubMed DOI
Bassi R., Fiorina P. Impact of islet transplantation on diabetes complications and quality of life. Current Diabetes Reports. 2011;11(5):355–363. doi: 10.1007/s11892-011-0211-1. PubMed DOI
Becker B. N., Odorico J. S., Becker Y. T., et al. Simultaneous pancreas-kidney and pancreas transplantation. Journal of the American Society of Nephrology. 2001;12(11):2517–2527. PubMed
Becker B. N., Brazy P. C., Becker Y. T., et al. Simultaneous pancreas-kidney transplantation reduces excess mortality in type 1 diabetic patients with end-stage renal disease. Kidney International. 2000;57(5):2129–2135. doi: 10.1046/j.1523-1755.2000.00064.x. PubMed DOI
Smets Y. F. C., Westendorp R. G. J., van der Pijl J. W., et al. Effect of simultaneous pancreas-kidney transplantation on mortality of patients with type-1 diabetes mellitus and end-stage renal failure. The Lancet. 1999;353(9168):1915–1919. doi: 10.1016/S0140-6736(98)07513-8. PubMed DOI
Giannarelli R., Coppelli A., Sartini M., et al. Effects of pancreas-kidney transplantation on diabetic retinopathy. Transplant International. 2005;18(5):619–622. doi: 10.1111/j.1432-2277.2005.00108.x. PubMed DOI
Pearce I. A., Ilango B., Sells R. A., Wong D. Stabilisation of diabetic retinopathy following simultaneous pancreas and kidney transplant. The British Journal of Ophthalmology. 2000;84(7):736–740. doi: 10.1136/bjo.84.7.736. PubMed DOI PMC
KožNarová R., Saudek F., Sosna T., et al. Beneficial effect of pancreas and kidney transplantation on advanced diabetic retinopathy. Cell Transplantation. 2000;9(6):903–908. doi: 10.1177/096368970000900617. PubMed DOI
Navarro X., Sutherland D. E. R., Kennedy W. R. Long-term effects of pancreatic transplantation on diabetic neuropathy. Annals of Neurology. 1997;42(5):727–736. doi: 10.1002/ana.410420509. PubMed DOI
Tavakoli M., Mitu-Pretorian M., Petropoulos I. N., et al. Corneal confocal microscopy detects early nerve regeneration in diabetic neuropathy after simultaneous pancreas and kidney transplantation. Diabetes. 2012;62(1):254–260. doi: 10.2337/db12-0574. PubMed DOI PMC
Jukema J. W., Smets Y. F. C., van der Pijl J. W., et al. Impact of simultaneous pancreas and kidney transplantation on progression of coronary atherosclerosis in patients with end-stage renal failure due to type 1 diabetes. Diabetes Care. 2002;25(5):906–911. doi: 10.2337/diacare.25.5.906. PubMed DOI
La Rocca E., Fiorina P., Di Carlo V., et al. Cardiovascular outcomes after kidney-pancreas and kidney-alone transplantation. Kidney International. 2001;60(5):1964–1971. doi: 10.1046/j.1523-1755.2001.00008.x. PubMed DOI
Biesenbach G., Konigsrainer A., Gross C., Margreiter R. Progression of macrovascular diseases is reduced in type 1 diabetic patients after more than 5 years successful combined pancreas-kidney transplantation in comparison to kidney transplantation alone. Transplant International. 2005;18(9):1054–1060. doi: 10.1111/j.1432-2277.2005.00182.x. PubMed DOI
Perseghin G., Fiorina P., de Cobelli F., et al. Cross-sectional assessment of the effect of kidney and kidney-pancreas transplantation on resting left ventricular energy metabolism in type 1 diabetic-uremic patients: a phosphorous-31 magnetic resonance spectroscopy study. Journal of the American College of Cardiology. 2005;46(6):1085–1092. doi: 10.1016/j.jacc.2005.05.075. PubMed DOI
Larsen J. L., Colling C. W., Ratanasuwan T., et al. Pancreas transplantation improves vascular disease in patients with type 1 diabetes. Diabetes Care. 2004;27(7):1706–1711. doi: 10.2337/diacare.27.7.1706. PubMed DOI
Fiorina P., La Rocca E., Venturini M., et al. Effects of kidney-pancreas transplantation on atherosclerotic risk factors and endothelial function in patients with uremia and type 1 diabetes. Diabetes. 2001;50(3):496–501. doi: 10.2337/diabetes.50.3.496. PubMed DOI
Rocha A., Martins L. S., Malheiro J., Dores J., Santos C., Henriques C. Changes in bone mineral density following long-term simultaneous pancreas-kidney transplantation. Journal of Bone and Mineral Metabolism. 2016;34(2):209–215. doi: 10.1007/s00774-015-0657-3. PubMed DOI
Ramsey-Goldman R., Dunn J. E., Dunlop D. D., et al. Increased risk of fracture in patients receiving solid organ transplants. Journal of Bone and Mineral Research. 1999;14(3):456–463. doi: 10.1359/jbmr.1999.14.3.456. PubMed DOI
Lauria M. W., Ribeiro-Oliveira A. Diabetes and other endocrine-metabolic abnormalities in the long-term follow-up of pancreas transplantation. Clinical Diabetes and Endocrinology. 2016;2(1):p. 14. doi: 10.1186/s40842-016-0032-x. PubMed DOI PMC
Early C., Stuckey L., Tischer S. Osteoporosis in the adult solid organ transplant population: underlying mechanisms and available treatment options. Osteoporosis International. 2016;27(4):1425–1440. doi: 10.1007/s00198-015-3367-8. PubMed DOI
Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporosis International. 2007;18(4):427–444. doi: 10.1007/s00198-006-0253-4. PubMed DOI
Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease–mineral and bone disorder (CKD-MBD) Kidney International Supplements. 2017;7(1):1–59. doi: 10.1016/j.kisu.2017.04.001. PubMed DOI PMC
International Registry in Organ Donation and Transplantation. Premilinary Numbers 2017. June 2018, http://www.irodat.org/img/database/pdf/NEWSLETTER2018_June.pdf.
International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) IFCC Scientific Division, Working Group on Standardization of HbA1c (WG-HbA1c), Mosca A., Goodall I., et al. Global standardization of glycated hemoglobin measurement: the position of the IFCC Working Group. Clinical Chemistry and Laboratory Medicine. 2007;45(8):1077–1080. doi: 10.1515/CCLM.2007.246. PubMed DOI
Levey A. S., Coresh J., Greene T., et al. Expressing the modification of diet in renal disease study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clinical Chemistry. 2007;53(4):766–772. doi: 10.1373/clinchem.2006.077180. PubMed DOI
Massry S. G., Coburn J. W., Chertow G. M., et al. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. American Journal of Kidney Diseases. 2003;42(4) Supplement 3:S1–201. PubMed
World Health Organization. WHO Technical Report Series 843; 1994. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis : report of a WHO study group. PubMed
Pan H., Wu N., Yang T., He W. Association between bone mineral density and type 1 diabetes mellitus: a meta-analysis of cross-sectional studies. Diabetes/Metabolism Research and Reviews. 2014;30(7):531–542. doi: 10.1002/dmrr.2508. PubMed DOI
Mastrandrea L. D., Wactawski-Wende J., Donahue R. P., Hovey K. M., Clark A., Quattrin T. Young women with type 1 diabetes have lower bone mineral density that persists over time. Diabetes Care. 2008;31(9):1729–1735. doi: 10.2337/dc07-2426. PubMed DOI PMC
Hamilton E. J., Rakic V., Davis W. A., et al. A five-year prospective study of bone mineral density in men and women with diabetes: the Fremantle Diabetes Study. Acta Diabetologica. 2012;49(2):153–158. doi: 10.1007/s00592-011-0324-7. PubMed DOI
Kayath M. J., Tavares E. F., Dib S. A., Vieira J. G. H. Prospective bone mineral density evaluation in patients with insulin-dependent diabetes mellitus. Journal of Diabetes and its Complications. 1998;12(3):133–139. doi: 10.1016/S1056-8727(97)00077-9. PubMed DOI
Clausen P., Feldt-Rasmussen B., Jacobsen P., et al. Microalbuminuria as an early indicator of osteopenia in male insulin-dependent diabetic patients. Diabetic Medicine. 1997;14(12):1038–1043. doi: 10.1002/(SICI)1096-9136(199712)14:12<1038::AID-DIA509>3.0.CO;2-1. PubMed DOI
Rigalleau V., Lasseur C., Raffaitin C., et al. Bone loss in diabetic patients with chronic kidney disease. Diabetic Medicine. 2007;24(1):91–93. doi: 10.1111/j.1464-5491.2007.02026.x. PubMed DOI
Klawansky S., Komaroff E., Cavanaugh P. F., Jr., et al. Relationship between age, renal function and bone mineral density in the US population. Osteoporosis International. 2003;14(7):570–576. doi: 10.1007/s00198-003-1435-y. PubMed DOI
Brunerová L., Ronová P., Verešová J., et al. Osteoporosis and impaired trabecular bone score in hemodialysis patients. Kidney & Blood Pressure Research. 2016;41(3):345–354. doi: 10.1159/000443439. PubMed DOI
Valkovsky I., Olsanska R., Tvrdik J., et al. Evaluation of biochemical markers and bone mineral density in patients with chronic kidney disease stage 5D at the start of hemodialysis treatment. Biomedical Papers. 2015;159(1):93–99. doi: 10.5507/bp.2013.087. PubMed DOI
Elder G. J., Mackun K. 25-Hydroxyvitamin D deficiency and diabetes predict reduced BMD in patients with chronic kidney disease. Journal of Bone and Mineral Research. 2006;21(11):1778–1784. doi: 10.1359/jbmr.060803. PubMed DOI
Dolgos S., Hartmann A., Isaksen G. A., et al. Osteoporosis is a prevalent finding in patients with solid organ failure awaiting transplantation - a population based study. Clinical Transplantation. 2010;24(5):E145–E152. doi: 10.1111/j.1399-0012.2010.01231.x. PubMed DOI
Campos Pastor M. M., Lopez-Ibarra P. J., Escobar-Jimenez F., Serrano Pardo M. D., Garcia-Cervigon A. G. Intensive insulin therapy and bone mineral density in type 1 diabetes mellitus: a prospective study. Osteoporosis International. 2000;11(5):455–459. doi: 10.1007/s001980070114. PubMed DOI
Ott S. M. Bone density in patients with chronic kidney disease stages 4-5. Nephrology. 2009;14(4):395–403. doi: 10.1111/j.1440-1797.2009.01159.x. PubMed DOI
Orlic L., Crncevic Z., Pavlovic D., Zaputovic L. Bone mineral densitometry in patients on hemodialysis: difference between genders and what to measure. Renal Failure. 2010;32(3):300–308. doi: 10.3109/08860221003611661. PubMed DOI
Hamilton E. J., Rakic V., Davis W. A., et al. Prevalence and predictors of osteopenia and osteoporosis in adults with type 1 diabetes. Diabetic Medicine. 2009;26(1):45–52. doi: 10.1111/j.1464-5491.2008.02608.x. PubMed DOI
Hadjidakis D. J., Raptis A. E., Sfakianakis M., Mylonakis A., Raptis S. A. Bone mineral density of both genders in type 1 diabetes according to bone composition. Journal of Diabetes and its Complications. 2006;20(5):302–307. doi: 10.1016/j.jdiacomp.2005.07.006. PubMed DOI
Kemink S. A. G., Hermus A. R. M. M., Swinkels L. M. J. W., Lutterman J. A., Smals A. G. H. Osteopenia in insulin-dependent diabetes mellitus; prevalence and aspects of pathophysiology. Journal of Endocrinological Investigation. 2000;23(5):295–303. doi: 10.1007/BF03343726. PubMed DOI
Lopez-Alvarenga J. C., Zarinan T., Olivares A., Gonzalez-Barranco J., Veldhuis J. D., Ulloa-Aguirre A. Poorly controlled type I diabetes mellitus in young men selectively suppresses luteinizing hormone secretory burst mass. The Journal of Clinical Endocrinology & Metabolism. 2002;87(12):5507–5515. doi: 10.1210/jc.2002-020803. PubMed DOI
Edey M. M. Male sexual dysfunction and chronic kidney disease. Frontiers in Medicine. 2017;4:p. 32. doi: 10.3389/fmed.2017.00032. PubMed DOI PMC
Holley J. L., Schmidt R. J. Changes in fertility and hormone replacement therapy in kidney disease. Advances in Chronic Kidney Disease. 2013;20(3):240–245. doi: 10.1053/j.ackd.2013.01.003. PubMed DOI
Castillo R. F., de la Rosa R. J. E. Relation between body mass index and bone mineral density among haemodialysis patients with chronic kidney disease. Journal of Renal Care. 2009;35(Supplement 1):57–64. doi: 10.1111/j.1755-6686.2009.00039.x. PubMed DOI
Stavroulopoulos A., Porter C. J., Roe S. D., Hosking D. J., Cassidy M. J. Relationship between vitamin D status, parathyroid hormone levels and bone mineral density in patients with chronic kidney disease stages 3 and 4. Nephrology. 2007;13(1):63–67. doi: 10.1111/j.1440-1797.2007.00860.x. PubMed DOI
Ray S., Beatrice A. M., Ghosh A., et al. Profile of chronic kidney disease related-mineral bone disorders in newly diagnosed advanced predialysis diabetic kidney disease patients: a hospital based cross-sectional study. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2017;11:S931–S937. doi: 10.1016/j.dsx.2017.07.019. PubMed DOI
Fidan N., Inci A., Coban M., Ulman C., Kursat S. Bone mineral density and biochemical markers of bone metabolism in predialysis patients with chronic kidney disease. Journal of Investigative Medicine. 2016;64(4):861–866. doi: 10.1136/jim-2015-000043. PubMed DOI
Bergman A., Qureshi A. R., Haarhaus M., et al. Total and bone-specific alkaline phosphatase are associated with bone mineral density over time in end-stage renal disease patients starting dialysis. Journal of Nephrology. 2017;30(2):255–262. doi: 10.1007/s40620-016-0292-7. PubMed DOI
Jean G., Souberbielle J. C., Chazot C. Vitamin D in chronic kidney disease and dialysis patients. Nutrients. 2017;9(4) doi: 10.3390/nu9040328. PubMed DOI PMC
Shaheen F. A. M., Kurpad R., Al-Sayyari A. A., et al. Multinational observational study on clinical practices and therapeutic management of mineral and bone disorders in patients with chronic kidney disease stages 4, 5, and 5D: the OCEANOS study. Saudi Journal of Kidney Diseases and Transplantation. 2016;27(2):290–304. doi: 10.4103/1319-2442.178266. PubMed DOI