Optimization of background electrolyte composition for simultaneous contactless conductivity and fluorescence detection in capillary electrophoresis of biological samples
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
17-31945A
Ministry of Health of the Czech Republic - International
RVO:68081715
Czech Academy of Sciences - International
LQ1601
Central European Institute of Technology - International
RVO:68081715
Akademie Věd České Republiky - International
17-31945A
Ministerstvo Zdravotnictví Ceské Republiky - International
PubMed
31218732
DOI
10.1002/elps.201900112
Knihovny.cz E-zdroje
- Klíčová slova
- Capillary electrophoresis, Contactless conductivity detection, Dual detection, Laser induced fluorescence detection, Saliva,
- MeSH
- dechové testy metody MeSH
- design vybavení MeSH
- elektrická vodivost MeSH
- elektroforéza kapilární metody MeSH
- fluorescenční spektrometrie metody MeSH
- glutathion analýza izolace a purifikace MeSH
- ionty analýza izolace a purifikace MeSH
- kyseliny karboxylové analýza izolace a purifikace MeSH
- lidé MeSH
- limita detekce MeSH
- lineární modely MeSH
- reprodukovatelnost výsledků MeSH
- slzy chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glutathion MeSH
- ionty MeSH
- kyseliny karboxylové MeSH
In this article, optimization of BGE for simultaneous separation of inorganic ions, organic acids, and glutathione using dual C4 D-LIF detection in capillary electrophoresis is presented. The optimized BGE consisted of 30 mM 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid, 15 mM 2-amino-2-hydroxymethyl-propane-1,3-diol, and 2 mM 18-crown-6 at pH 7.2 and allowed simultaneous separation of ten inorganic anions and cations, three organic acids and glutathione in 20 min. The samples were injected hydrodynamically from both capillary ends using the double-opposite end injection principle. Sensitive detection of anions, cations, and organic acids with micromolar LODs using C4 D and simultaneously glutathione with nanomolar LODs using LIF was achieved in a single run. The developed BGE may be useful in analyses of biological samples containing analytes with differing concentrations of several orders of magnitude that is not possible with single detection mode.
Department of Applied Chemistry Aichi Institute of Technology Toyota Japan
Department of Bioanalytical Instrumentation CEITEC Masaryk University Brno Czech Republic
Department of Chemistry Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Phillips, T., Electrophoresis 2018, 39, 126-135.
Di Venere, M., Viglio, S., Cagnone, M., Bardoni, A., Salvini, R., Iadarola, P., Electrophoresis 2018, 39, 160-178.
Kubáň, P., Foret, F., Anal. Chim. Acta 2013, 805, 1-18.
Heikenfeld, J., Electroanalysis 2016, 28, 1242-1249.
Zhou, L., Beuerman, R. W., Prog. Retinal Eye Res. 2012, 31, 527-550.
Hold, K. M., de Boer, D., Zuidema, J., Maes, R. A. A., Int. J. Drug Test. 1999, 1, 1-36.
Greguš, M., Foret, F., Kindlová, D., Pokojová, E., Plutinský, M., Doubková, M., Merta, Z., Binková, I., Skřičková, J., Kubáň, P., J. Breath Res. 2015, 9, 027107.
Hodáková, J., Preisler, J., Kubáň, P., Foret, F., J. Chromatogr. A 2015, 1391, 102-108.
Lačná, J., Foret, F., Kubáň, P., Talanta 2017, 169, 85-90.
Chvojka, T., Jelínek, I., Opekar, F., Štulík, K., Anal. Chim. Acta 2001, 433, 13-21.
Novotný, M., Opekar, F., Jelínek, I., Štulík, K., Anal. Chim. Acta 2004, 525, 17-21.
Grabowska, I., Sajnoga, M., Juchniewicz, M., Chudy, M., Dybko, A., Brzozka, Z., Microelectron. Eng. 2007, 84, 1741-1743.
Tan, F., Yang, B., Guan, Y., Anal. Sci. 2005, 211, 583-585.
Shen, F., Yang, M., Yu, Y., Kang, Q., Chin. Chem. Lett. 2008, 19, 1333-1336.
Shen, F., Yang, M., Yu, Y., Kang, Q., Microsyst. Technol. 2009, 15, 881-885.
Nuchtavorn, N., Ryvolová, M., Bek, F., Macka, M., Phechkrajang, C., Suntornsuk, L., Anal. Sci. 2013, 29, 339-344.
Francisco, K. J. M., Do Lago, C. L., Electrophoresis 2016, 37, 1718-1724.
Beutner, A., Scherer, B., Matysik, F.-M., Talanta 2018, 183, 33-38.
Cieslarova, Z., Magaldi, M., Barros, L. A., do Lago, C. L., Oliveira, D. R., Fonseca, F. A. H., Izar, M. C., Lopes, A. S., Tavares, M. F. M., Klassen, A., J. Chromatogr. A 2019, 1583, 136-142.
Ryvolová, M., Preisler, J., Foret, F., Hauser, P. C., Krásensky, P., Paull, B., Macka, M., Anal. Chem. 2010, 82, 129-135.
Kuban, P., Karlberg, B., Anal. Chem. 1998, 70, 360-365.
Padarauskas, A., Olsauskaite, V., Schwedt, G., J. Chromatogr. A 1998, 800, 369-375.
Prikryl, J., Foret, F., Anal. Chem. 2014, 86, 11951-11956.
Greguš, M., Foret, F., Kubáň, P., Electrophoresis 2015, 36, 526-533.
Kuban, P., Karlberg, B., Kuban, P., Kuban, V., J. Chromatogr. A 2002, 964, 227-241.
Papini, A., Rudolph, S., Siglmüller, G., Musiol, H. J., Göhring, W., Moroder, L., Int. J. Pept. Protein Res. 1992, 39, 348-355.
Han, Y. L., Zuo, M., Qi, L., Liu, K., Mao, L. Q., Chen, Y., Electrophoresis 2006, 27, 4240-4248.
Song, L. J., Guo, Z. P., Chen, Y., Anal. Chim. Acta 2011, 703, 257-263.
Pobozy, E., Czarkowska, W., Trojanowicz, M., J. Biochem. Biophys. Methods 2006, 67, 37-47.
Choy, C. K. M., Cho, P., Chung, W.-Y., Benzie, I. F. F., Invest. Ophthalmol. Visual Sci. 2001, 42, 3130-3134.
Saijyothi, A. V., Fowjana, J., Madhumathi, S., Rajeshwari, M., Thennarasu, M., Prema, P., Angyarkanni, N., Exp. Eye Res. 2012, 103, 41-46.