Photochemical C-H Amination of Ethers and Geminal Difunctionalization Reactions in One Pot
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
RVO: 613889633
IOCB Prague - International
17-14510S
grant agency of the Czech Republic - International
GSRCIII
Gilead Sciences & IOCB Research Center - International
CM1201
COST - International
- Keywords
- C−H activation, amination, photoreactions, radicals, sulfonyl azides,
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
A mild, atom-economic, and metal-free α-C-H amination of ethers using relatively stable nonafluorobutanesulfonyl (nonaflyl, Nf) azide as the aminating reagent to give N-sulfonyl hemiaminals is reported. This enables unprecedented C(sp3 ) difunctionalization reactions, leading to diverse functionalized amino group containing compounds starting from simple ethers in one pot.
See more in PubMed
H. M. L. Davies, Angew. Chem. Int. Ed. 2006, 45, 6422-6425;
Angew. Chem. 2006, 118, 6574-6577.
F. Collet, R. H. Dodd, P. Dauban, Chem. Commun. 2009, 5061-5074.
D. S. Breslow, M. F. Sloan, N. R. Newburg, W. B. Renfrow, J. Am. Chem. Soc. 1969, 91, 2273-2279;
D. S. Breslow, E. I. Edwards, R. Leone, P. v. R. Schleyer, J. Am. Chem. Soc. 1968, 90, 7097-7102.
L. Junk, U. Kazmaier, Org. Biomol. Chem. 2016, 14, 2916-2923, and references therein.
Reviews:
K. Shin, H. Kim, S. Chang, Acc. Chem. Res. 2015, 48, 1040-1052;
T. A. Ramirez, B. Zhao, Y. Shi, Chem. Soc. Rev. 2012, 41, 931-942;
R. T. Gephart, T. H. Warren, Organometallics 2012, 31, 7728-7752;
J. L. Roizen, M. E. Harvey, J. Du Bois, Acc. Chem. Res. 2012, 45, 911-922;
J. Du Bois, Org. Process Res. Dev. 2011, 15, 758-762;
C. M. Che, V. K. Lo, C. Y. Zhou, J. S. Huang, Chem. Soc. Rev. 2011, 40, 1950-1975;
F. Collet, C. Lescot, P. Dauban, Chem. Soc. Rev. 2011, 40, 1926-1936;
D. Zalatan, J. Du Bois, Top. Curr. Chem. 2010, 292, 347-378;
H. M. L. Davies, J. R. Manning, Nature 2008, 451, 417-424;
M. Díaz-Requejo, P. Pérez, Chem. Rev. 2008, 108, 3379-3394;
H. M. L. Davies, M. S. Long, Angew. Chem. Int. Ed. 2005, 44, 3518-3520;
Angew. Chem. 2005, 117, 3584-3586;
P. Müller, C. Fruit, Chem. Rev. 2003, 103, 2905-2920.
X. Hong, D. A. Bercovici, Z. Y. Yang, N. Al-Bataineh, R. Srinivasan, R. C. Dhakal, K. N. Houk, M. Brewer, J. Am. Chem. Soc. 2015, 137, 9100-9107.
Review on cross-dehydrogenative coupling:
R. Samanta, K. Matcha, A. P. Antonchick, Eur. J. Org. Chem. 2013, 5769-5804; Intramolecular oxidative aminations:
V. P. Mehta, B. Punji, RSC Adv. 2013, 3, 11957-11986; Review on aryl aminations:
R. Samanta, A. P. Antonchick, Synlett 2012, 23, 809-813.
M. Ochiai, K. Miyamoto, T. Kaneaki, S. Hayashi, W. Nakanishi, Science 2011, 332, 448-451;
M. Ochiai, S. Yamane, M. M. Hoque, M. Saito, K. Miyamoto, Chem. Commun. 2012, 48, 5280-5282.
S.-Z. Zhu, J. Chem. Soc. Perkin Trans. 1 1994, 2077-2081; A review on TfN3:
B. A. Shainyan, L. L. Tolstikova, Chem. Rev. 2013, 113, 699-733; Selected other uses of TfN3:
L. Benati, D. Nanni, P. Spagnolo, J. Org. Chem. 1999, 64, 5132-5138;
N. Kamigata, K. Yamamoto, O. Kawakita, K. Hikita, H. Matsuyama, M. Yoshida, M. Kobayashi, Bull. Chem. Soc. Jpn. 1984, 57, 3601-3602.
Excellent overviews about radical-based amination methods:
L. Y. Dian, Q. Y. Xing, D. Zhang-Negrerie, Y. F. Du, Org. Biomol. Chem. 2018, 16, 4384-4398;
J. Campos, S. K. Goforth, R. H. Crabtree, T. B. Gunnoe, RSC Adv. 2014, 4, 47951-47957;
Y. T. Zhao, W. J. Xia, Chem. Soc. Rev. 2018, 47, 2591-2608.
R. Fan, D. Pu, F. Wen, J. Wu, J. Org. Chem. 2007, 72, 8994-8997.
H.-M. Guo, C. Xia, H.-Y. Niu, X.-T. Zhang, S.-N. Kong, D.-C. Wang, G.-R. Qu, Adv. Synth. Catal. 2011, 353, 53-56;
Z. Luo, Z. Y. Jiang, W. Jiang, D. G. Lin, J. Org. Chem. 2018, 83, 3710-3718.
I. Buslov, X. Hu, Adv. Synth. Catal. 2014, 356, 3325-3330.
M. J. Mitcheltree, Z. A. Konst, S. B. Herzon, Tetrahedron 2013, 69, 5634-5639;
J. L. Chiara, J. R. Suárez, Chem. Commun. 2013, 49, 9194-9196;
J. L. Chiara, J. R. Suárez, Adv. Synth. Catal. 2011, 353, 575-579, and references therein.
V. Kapras, R. Pohl, I. Císařová, U. Jahn, Org. Lett. 2014, 16, 1088-1091.
Reviews on the reactivity of similar N-acyliminium ions:
A. Yazici, S. G. Pyne, Synthesis 2009, 339-368;
A. Yazici, S. G. Pyne, Synthesis 2009, 513-541;
W. J. N. Meester, J. H. van Maarseveen, H. E. Schoemaker, H. Hiemstra, F. P. J. T. Rutjes, Eur. J. Org. Chem. 2003, 2519-2529.
Review on N-sulfonyliminium ions:
S. M. Weinreb, Top. Curr. Chem. 1997, 190, 131-184; Leading recent references:
C. A. Leverett, M. P. Cassidy, A. Padwa, J. Org. Chem. 2006, 71, 8591-8601, and references therein;
S. S. Kinderman, M. M. T. Wekking, J. H. van Maarseveen, H. E. Schoemaker, H. Hiemstra, F. P. J. T. Rutjes, J. Org. Chem. 2005, 70, 5519-5527, and references therein.
TMSOTf was necessary to promote reactions of N-Cbz hemiaminals with nucleophiles: M. Sugiura, H. Hagio, R. Hirabayashi, S. Kobayashi, J. Am. Chem. Soc. 2001, 123, 12510-12517.
For leading references for nonaflyl group deprotection, see Ref. [14a]. Triflyl group deprotection:
L. Chu, X.-C. Wang, C. E. Moore, A. L. Rheingold, J.-Q. Yu, J. Am. Chem. Soc. 2013, 135, 16344-16347;
K. S. L. Chan, H.-Y. Fu, J.-Q. Yu, J. Am. Chem. Soc. 2015, 137, 2042-2046;
Y. Wang, Y. Wu, Y. Lia, Y. Tang, Chem. Sci. 2017, 8, 3852-3857.
Leading review: P. Panchaud, L. Chabaud, Y. Landais, C. Ollivier, P. Renaud, S. Zigmantas, Chem. Eur. J. 2004, 10, 3606-3614.
Triflyl nitrene was recently determined to have a triplet ground state and 1 a is assumed to be so by analogy: X. Q. Zeng, H. Beckers, H. Willner, P. Neuhaus, D. Grote, W. Sander, J. Phys. Chem. A 2015, 119, 2281-2288.
The radical coupling of THF radicals with TEMPO under photolytic radical conditions is facile: R. Braslau, L. C. Burrill II, M. Siano, N. Naik, R. K. Howden, L. K. Mahal, Macromolecules 1997, 30, 6445-6450.
A. Das, A. G. Maher, J. Telser, D. C. Powers, J. Am. Chem. Soc. 2018, 140, 10412-10415. Hydrogen abstraction by tosylaminyl radicals generated from chloramine-T proceeds with a KIE of 4.4. Concerted nitrenoid insertions have a KIE of 2.6. The photolytic reaction of TsN3 with THF proceeded only in 7 % yield, which is in line with results obtained for the related arenesulfonyl azides 1 b,c (cf. Table 1, entries 2,3).
Sulfonyl Nitrene and Amidyl Radical: Structure and Reactivity