A simulation study of left ventricular decompression using a double lumen arterial cannula prototype during a veno-arterial extracorporeal membrane oxygenation

. 2019 Dec ; 42 (12) : 748-756. [epub] 20190627

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31244372

Grantová podpora
R01 HL139813 NHLBI NIH HHS - United States

BACKGROUND: Veno-arterial extracorporeal membrane oxygenation can be vital to support patients in severe or rapidly progressing cardiogenic shock. In cases of left ventricular distension, left ventricular decompression during veno-arterial extracorporeal membrane oxygenation may be a crucial factor influencing the patient outcome. Application of a double lumen arterial cannula for a left ventricular unloading is an alternative, straightforward method for left ventricular decompression during extracorporeal membrane oxygenation in a veno-arterial configuration. OBJECTIVES: The purpose of this article is to use a mathematical model of the human adult cardiovascular system to analyze the left ventricular function of a patient in cardiogenic shock supported by veno-arterial extracorporeal membrane oxygenation with and without the application of left ventricular unloading using a novel double lumen arterial cannula. METHODS: A lumped model of cardiovascular system hydraulics has been coupled with models of non-pulsatile veno-arterial extracorporeal membrane oxygenation, a standard venous cannula, and a drainage lumen of a double lumen arterial cannula. Cardiogenic shock has been induced by decreasing left ventricular contractility to 10% of baseline normal value. RESULTS: The simulation results indicate that applying double lumen arterial cannula during veno-arterial extracorporeal membrane oxygenation is associated with reduction of left ventricular end-systolic volume, end-diastolic volume, end-systolic pressure, and end-diastolic pressure. CONCLUSIONS: A double lumen arterial cannula is a viable alternative less invasive method for left ventricular decompression during veno-arterial extracorporeal membrane oxygenation. However, to allow for satisfactory extracorporeal membrane oxygenation flow, the cannula design has to be revisited.

Zobrazit více v PubMed

Napp LC, Kuhn C, Bauersachs J. ECMO in cardiac arrest and cardiogenic shock. Herz 2017; 42: 27–44. PubMed PMC

Meani P, Gelsomino S, Natour E, et al. Modalities and Effects of Left Ventricle Unloading on Extracorporeal Life support: a Review of the Current Literature. Eur J Heart Fail 2017; 19 Suppl 2: 84–91. PubMed

Ostadal P, Mlcek M, Kruger A, et al. Increasing venoarterial extracorporeal membrane oxygenation flow negatively affects left ventricular performance in a porcine model of cardiogenic shock. J Transl Med 2015; 13: 266. PubMed PMC

Strunina S, Hozman J, Ostadal P. Relation Between Left Ventricular Unloading During Ecmo And Drainage Catheter Size Assessed By Mathematical Modeling. Acta Polytech Scand Chem Technol Ser 2017; 57: 367.

Truby LK, Takeda K, Mauro C, et al. Incidence and Implications of Left Ventricular Distention During Venoarterial Extracorporeal Membrane Oxygenation Support. ASAIO J 2017; 63: 257–265. PubMed

Alhussein M, Osten M, Horlick E, et al. Percutaneous left atrial decompression in adults with refractory cardiogenic shock supported with veno-arterial extracorporeal membrane oxygenation. J Card Surg 2017; 32: 396–401. PubMed

Strunina S, Ostadal P . Left ventricle unloading during veno-arterial extracorporeal membrane oxygenation. Current Research: Cardiology; 3, https://www.pulsus.com/scholarly-articles/left-ventricle-unloading-during-venoarterial-extracorporeal-membrane-oxygenation.html (2016).

Donker DW, Brodie D, Henriques JPS, et al. Left ventricular unloading during veno-arterial ECMO: a review of percutaneous and surgical unloading interventions. Perfusion 2018; 267659118794112. PubMed PMC

Kussmaul WG 3rd, Buchbinder M, Whitlow PL, et al. Rapid arterial hemostasis and decreased access site complications after cardiac catheterization and angioplasty: results of a randomized trial of a novel hemostatic device. J Am Coll Cardiol 1995; 25: 1685–1692. PubMed

Merrer J, De Jonghe B, Golliot F, et al. Complications of femoral and subclavian venous catheterization in critically ill patients: a randomized controlled trial. JAMA 2001; 286: 700–707. PubMed

Strunina S, Hozman J, Ostadal P. The peripheral cannulas in extracorporeal life support. Biomed Tech. Epub ahead of print 12 April 2018 DOI: 10.1515/bmt-2017-0107. PubMed DOI

Brunner M-E, Banfi C, Giraud R. Venoarterial Extracorporeal Membrane Oxygenation in Refractory Cardiogenic Shock and Cardiac Arrest In: Firstenberg MS (ed) Extracorporeal Membrane Oxygenation: Advances in Therapy. InTech, 2016.

Donker DW, Brodie D, Henriques JPS, et al. Left Ventricular Unloading During Veno-Arterial ECMO: A Simulation Study. ASAIO J 2019; 65: 11–20. PubMed PMC

Strunina S, Hozman J, Ošt’ádal P. A cannula containing a base tube with two adjacent longitudinally leading lumens. Excerpt from the database ofpatents and utility models, https://isdv.upv.cz/webapp/webapp.pts.det?xprim=10225884&lan=en (2018, accessed 20 July 2018).

Jeẑek F ECMO DLAC model demonstration. The Virtual Physiological Rat Project, http://virtualrat.org/models/ecmo-dlac-model-demonstration-0 (2019, accessed 25 April 2019).

Jeẑek F. Physiolibrarymodels. GitHub, https://github.com/filip-jezek/Physiolibrary.models (accessed 20 July 2017).

Mateják M, Kulhánek T, Šilar J, et al. Physiolibrary - Modelica library for Physiology. In: 10th International Modelica Conference Lund, Sweden, 2014.

Mateják M Physiology in Modelica. MEFANET Journal 2014; 2: 10–14.

Ježek F, Kulhánek T, Kalecký K, et al. Lumped models of the cardiovascular system of various complexity. Biocybernetics and Biomedical Engineering 2017; 37: 666–678.

Arts T, Lumens J, Kroon W, et al. Control of Whole Heart Geometry by Intramyocardial Mechano-Feedback: A Model Study. PLoS Comput Biol; 8 Epub ahead of print 2 September 2012 DOI: 10.1371/joumal.pcbi.l002369. PubMed DOI PMC

Mynard JP, Davidson MR, Penny DJ, et al. A simple, versatile valve model for use in lumped parameter and one-dimensional cardiovascular models. Int J Numer Meth Biomed Engng 2012; 28: 626–641. PubMed

Bovendeerd PHM, Borsje P, Arts T, et al. Dependence of Intramyocardial Pressure and Coronary Flow on Ventricular Loading and Contractility: A Model Study. Ann Biomed Eng 2006; 34: 1833–1845. PubMed PMC

Smith BW, Chase JG, Nokes RI, et al. Minimal haemodynamic system model including ventricular interaction and valve dynamics. Med Eng Phys 2004; 26: 131–139. PubMed

Maquet, Getinge Group. Avalon Elite Bi-Caval Dual Lumen Catheter (Datasheet). {Maquet, Getinge Group; }, https://www.getinge.com/siteassets/products-a-z/avalon-elite-bi-caval-dual-lumen-catheter/avalonelite_mcp_br_10012_en_l_screen.pdf?disclaimerAccepted=yes (Date unknown).

Maquet Getinge Group. Canules HLS Des solutions du drainage a la reinjection, https://www.maquet.com/globalassets/products/canules-hls/brochure-fr---canules-hls.pdf (2017).

Wang S, Force M, Kunselman AR, et al. Hemodynamic Evaluation of Avalon Elite Bi-Caval Dual Lumen Cannulas and Femoral Arterial Cannulas. Artif Organs 2019; 43: 41–53. PubMed

Extracorporeal Life Support Organization. ELSO Guidelines for Cardiopulmonary Extracorporeal Life Support. Version 1.4 August 2017, Extracorporeal Life Support Organization, https://www.elso.org/Portals/0/ELSO%20Guidelines%20General%20All%20ECLS%20Version%201_4.pdf (August 2017).

Tewelde SZ, Liu SS, Winters ME. Cardiogenic Shock. Cardiol Clin 2018; 36: 53–61. PubMed

Silverthom DU. Human Physiology: An Integrated Approach. Pearson Education, 2013.

Hochman JS, Magnus Ohman E. Cardiogenic Shock. John Wiley & Sons, 2009.

Broome M, Donker DW. Individualized real-time clinical decision support to monitor cardiac loading during venoarterial ECMO. J Transl Med 2016; 14: 4. PubMed PMC

Guirgis M, Kumar K, Menkis AH, et al. Minimally invasive left-heart decompression during venoarterial extracorporeal membrane oxygenation: an alternative to a percutaneous approach. Interact Cardiovasc Thorac Surg 2010; 10: 672–674. PubMed

Barbone A, Malvindi PG, Ferrara P, et al. Left ventricle unloading by percutaneous pigtail during extracorporeal membrane oxygenation. Interact Cardiovasc Thorac Surg 2011; 13: 293–295. PubMed

Rupprecht L, Florchinger B, Schopka S, et al. Cardiac decompression on extracorporeal life support: a review and discussion of the literature. ASAIO J 2013; 59: 547–553. PubMed

Hong TH, Byun JH, Yoo BH, et al. Successful Left-Heart Decompression during Extracorporeal Membrane Oxygenation in an Adult Patient by Percutaneous Transaortic Catheter Venting. Korean J Thorac Cardiovasc Surg 2015; 48: 210–213. PubMed PMC

Fumagalli R, Bombino M, Borelli M, et al. Percutaneous bridge to heart transplantation by venoarterial ECMO and transaortic left ventricular venting. Int J Artif Organs 2004; 27: 410–413. PubMed

Avalli L, Maggioni E, Sangalli F, et al. Percutaneous left-heart decompression during extracorporeal membrane oxygenation: an alternative to surgical and transeptal venting in adult patients. ASAIO J 2011; 57: 38–40. PubMed

Silar J, Polak D, Mladek A, et al. Bodylight.js - toolchain for authoring in-browser simulators. JMIR Preprints, https://preprints.jmir.org/preprint/14160 (2019, accessed 23 April 2019).

Wang S, Chin BJ, Gentile F, et al. Potential Danger of Pre-Pump Clamping on Negative Pressure-Associated Gaseous Microemboli Generation During Extracorporeal Life Support--An In Vitro Study. Artif Organs 2016; 40: 89–94. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Left ventricular unloading and the role of ECpella

. 2021 Mar ; 23 (Suppl A) : A27-A34. [epub] 20210327

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace