The purification and identification of human blood serum proteins with affinity to the antitumor active RL2 lactaptin using magnetic microparticles
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Grant # VW 90315
Volkswagen Shifting
PubMed
31299101
DOI
10.1002/bmc.4647
Knihovny.cz E-zdroje
- Klíčová slova
- RL2 antitumor agent, human blood serum proteins, identification, magnetic microparticles, mass spectrometry and western blotting, purification,
- MeSH
- chromatografie afinitní metody MeSH
- kaseiny metabolismus MeSH
- krevní proteiny analýza izolace a purifikace metabolismus MeSH
- kyseliny polymethakrylové chemie MeSH
- lidé MeSH
- magnety chemie MeSH
- mikrosféry MeSH
- protinádorové látky metabolismus MeSH
- rekombinantní proteiny metabolismus MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kaseiny MeSH
- krevní proteiny MeSH
- kyseliny polymethakrylové MeSH
- lactaptin, human MeSH Prohlížeč
- polyglycidyl methacrylate MeSH Prohlížeč
- protinádorové látky MeSH
- rekombinantní proteiny MeSH
The cytopoxic effect of RL2 lactaptin (the recombinant analog of proteolytic fragment of human kappa-casein) toward tumor cells in vitro and in vivo presents it as a novel promising antitumor drug. The binding of any drug with serum proteins can affect their activity, distribution, rate of excretion and toxicity in the human body. Here, we studied the ability of RL2 to bind to various blood serum proteins. Using magnetic microparticles bearing by RL2 as an affinity matrix, in combination with mass spectrometry and western blot analysis, we found a number of blood serum proteins possessing affinity for RL2. Among them IgA, IgM and IgG subclasses of immunoglobulins, apolipoprotein A1 and various cortactin isoforms were identified. This data suggests that in the bloodstream RL2 lactaptin takes part in complicate protein-protein interactions, which can affect its activity.
Institute of Cell Biology NAS Ukraine Lviv Ukraine
Institute of Macromolecular Chemistry AS CR Prague Czech Republic
Zobrazit více v PubMed
Beghein, E., Devriese, D., Van Hoey, E., & Gettemans, J. (2018). Cortactin and fascin-1 regulate extracellular vesicle release by controlling endosmal trafficking or invadopodia formation and function. Scientific Reports, 8, 15606. https://doi.org/10.1038/s41598-018-33868-z
Campos, E., Branquinho, J., Carreira, A., Carvalho, A., Coimbra, P., Ferreira, P., & Gil, M. (2013). Designing polymeric microparticles for biomedical and industrial applications. European Polymer Journal, 49, 2005-2021. https://doi.org/10.1016/j.eurpolymj.2013.04.033
Conlan, R. S., Pisano, S., Oliveira, M. I., Ferrari, M., & Pinto, I. M. (2017). Exosomes as reconfigurable therapeutic systems. Trends in Molecular Medicine, 23, 636-650. https://doi.org/10.1016/j.molmed.2017.05.003
Dong, Z., Ahrens, C. C., Yu, D., Ding, Z., Lim, H. T., & Li, W. (2017). Cell isolation and recovery using hollow glass microspheres coated with nanolayered films for applications in resource-limited settings. ACS Applied Materials & Interfaces, 9, 15265-15273. https://doi.org/10.1021/acsami.7b02197
Hage, D. S., & Tweed, S. A. (1997). Recent advances in chromatographic and electrophoretic methods for the study of drug-protein interactions. Journal of Chromatography B, Biomedical Sciences and Applications, 699, 499-525. https://doi.org/10.1016/S0378-4347(97)00178-3
Horák, D., Hlídková, H., Kit, Y., Antonyuk, V., Myronovsky, S., & Stoika, R. (2017). Magneticpoly(2-hydroxyethyl methacrylate) microspheres for affinity purification of monospecific anti-p46 kDa/Myo1C antibodies for early diagnosis of multiplesclerosis patients. Bioscience Reports, 28, 37. https://doi.org/10.1042/BSR20160526
Horák, D., Plichta, Z., Starykovych, M., Myronovskij, S., Kit, Y., Chopyak, V., & Stoika, R. (2015). Calf thymus histone-conjugated magnetic poly(2-oxoethyl methacrylate) microspheres for affinity isolation of anti-histoneIgGs from the blood serum of patients with systemic lupus erythematosus. RSC Advances, 5, 63050-66355. https://doi.org/10.1039/C5RA09280A
Katsube, T., Togashi, S., Hashimoto, N., Ogiu, T., & Tsuji, H. (2004). Filamentous actin binding ability of cortactin isoforms is responsible for their cell-cell junctional localization in epithelialcells. Archives of Biochemistry and Biophysics, 427, 79-90. https://doi.org/10.1016/j.abb.2004.04.015
Kirkbride, K. C., Hong, N. H., French, C. L., Clark, E. S., Jerome, W. G., & Weaver, A. M. (2012). Regulation of late endosomal/lysosomal maturation and trafficking by cortactin affects Golgi morphology. Cytoskeleton (Hoboken), 69, 625-643. https://doi.org/10.1002/cm.21051
Kirkbride, K. C., Sung, B. H., Sinha, S., & Weaver, A. M. (2011). Cortactin: A multi functional regulator of cellular invasiveness. Cell Adhesion & Migration, 5, 187-198. PMID: 21258212
Koval, O. A., Fomin, A. S., Kaledin, V. I., Semenov, D. V., Potapenko, M. O., Kuligina, E. V., & Richter, V. A. (2012). A novel pro-apoptotic effector lactaptin inhibits tumor growth in mice models. Biochimie, 94, 2467-2474. http://doi.org/10.1016/J.BIOCHI.2012.08.017
Koval, O. A., Tkachenko, A. V., Fomin, A. S., Semenov, D. V., Nushtaeva, A. A., Kuligina, E. V., & Richter, V. A. (2014). Lactaptin induces p53-independent cell death associated with features of apoptosis and autophagy and delays growth of breast cancer cells in mouse xenografts. PLoS ONE, 9, e93921. http://doi.org/10.1371/journal.pone.0093921
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685. https://doi.org/10.1038/227680a0
Nekipelaya, V. V., Semenov, D. V., Potapenko, M. O., Kuligina, E. V., Kit, Y., Romanova, I. V., & Richter, V. A. (2008). Lactaptinis a human milk protein inducing apoptosis of MCF-7 adenocarcinoma cells. Doklady. Biochemistry and Biophysics, 419, 58-61. PMID:18505157. https://doi.org/10.1134/S1607672908020038
Ohoka, Y., & Takai, Y. (1998). Isolation and characterization of cortactin isoforms and a novel cortactin-binding protein, CBP90. Genes to Cells, 3, 603-612. https://doi.org/10.1046/j.1365-2443.1998.00216.x
Salimi, K., Usta, D. D., Koçer, İ., Çelik, E., & Tuncel, A. (2017). Highly selective magnetic affinity purification of histidine-tagged proteins by Ni2+ carrying monodisperse composite microspheres. RSC Advances, 7, 8718-8726. https://doi.org/10.1039/C6RA27736E
Sanei, H., Hamedakbari-Tusi, S., Asoodeh, A., & Chamani, J. (2011). Multi-spectroscopic investigations of aspirin and colchicine interactions with human hemoglobin: Binary and ternary systems. Journal of Solution Chemistry, 40(11), 1905-1931. https://doi.org/10.1007/s10953-011-9766-3
Semenov, D. V., Fomin, A. S., Kuligina, E. V., Koval, O. A., Matveeva, V. A., Babkina, I. N., & Richter, V. A. (2010). Recombinant analogs of a novel milk pro-apoptotic peptide, lactaptin, and their effect on cultured human cells. The Protein Journal, 29, 174-180. http://doi.org/10.1007/s10930-010-9237-5
Sharif-Barfeh, Z., Beigoli, S., Marouzi, S., Sharifi Rad, A., Asoodeh, A., & Chamani, J. (2017). Multi-spectroscopic and HPLC studies of the interaction between estradiol and cyclophosphamide with human serum albumin: Binary and ternary systems. Journal of Solution Chemistry, 46(2), 488-504. https://doi.org/10.1007/s10953-017-0590-2
Sinha, S., Hoshino, D., Hong, N. H., Kirkbride, K. C., Grega-Larson, N. E., Seiki, M., … Weaver, A. M. (2016). Cortactin promotes exosome secretion by controlling branched actin dynamics. The Journal of Cell Biology, 214, 197-213. https://doi.org/10.1083/jcb.201601025
Tesseromatis, C., & Alevizou, A. (2008). The role of the protein-binding on the mode of drug action as well the interactions with other drugs. European Journal of Drug Metabolism and Pharmacokinetics, 33, 225-230, 19230595. https://doi.org/10.1007/BF03190876
Utreja, P., Jain, S., & Tiwary, A. K. (2010). Novel drug delivery systems for sustained and targeted delivery of anti- cancer drugs: current status and future prospects. Current Drug Delivery, 7, 152-161. PMID:20158482. https://doi.org/10.2174/156720110791011783
Wang, B., Shao, Q., Fang, Y., Wang, J., Xi, X., Chu, Q., … Wei, Y. (2017). Fabrication of imidazolium-functionalized magnetic composite microspheres for selective recognition and separation of heme proteins. New Journal of Chemistry, 41, 5651-5659. https://doi.org/10.1039/C7NJ00109F
Wasan, K. M., Brocks, D. R., Lee, S. D., Sachs-Barrable, K., & Thornton, S. J. (2008). Impact of lipoproteins on the biological activity and disposition of hydrophobic drugs: implications for drug discovery. Nature Reviews Drug Discovery, 7, 84-99. https://doi.org/10.1038/nrd2353
Zasońska, B. A., Hlídková, H., Petrovský, E., Myronovskij, S., Nehrych, T., Negrych, N., … Horák, D. (2018). Monodisperse magnetic poly(glycidylmethacrylate) microspheres for isolation of autoantibodies with affinity for the 46 kDa form of unconventional Myo1C present in autoimmunepatients. Mikrochimica Acta, 185, 262. https://doi.org/10.1007/s00604-018-2807-
Zhao, Z.-B., Tai, L., Zhang, D.-M., & Jiang, Y. (2017). Facile fabrication of siloxane@poly (methylacrylic acid) core-shell microparticles with different functional groups. Journal of Nanoparticle Research, 19, 73. https://doi.org/10.1007/i11051-017-3777