Species of Characidotrema Paperna & Thurston, 1968 (Monogenea: Dactylogyridae) from fishes of the Alestidae (Characiformes) in Africa: new species, host-parasite associations and first insights into the phylogeny of the genus
Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
P505/12/G112
Grantová Agentura České Republiky
PubMed
31349871
PubMed Central
PMC6659303
DOI
10.1186/s13071-019-3580-y
PII: 10.1186/s13071-019-3580-y
Knihovny.cz E-resources
- Keywords
- Africa, Alestidae, Brycinus, Characidotrema, DNA, Dactylogyridae, Diversity, Monogenea,
- MeSH
- Cichlids parasitology MeSH
- Phylogeny * MeSH
- Host-Parasite Interactions * MeSH
- Lakes parasitology MeSH
- Fish Diseases parasitology MeSH
- DNA, Ribosomal genetics MeSH
- Trematoda classification isolation & purification MeSH
- Gills parasitology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Africa South of the Sahara MeSH
- Names of Substances
- DNA, Ribosomal MeSH
BACKGROUND: African tetras (Alestidae) belonging to Brycinus Valenciennes are known to be parasitized with monogeneans attributed to two genera, Annulotrema Paperna & Thurston, 1969 and Characidotrema Paperna & Thurston, 1968 (Dactylogyridae). During a survey of monogeneans parasitizing alestids, species of Characidotrema were collected in Cameroon, D. R. Congo, Senegal, South Africa, Sudan and Zimbabwe. This paper provides new morphological data and the first molecular analysis broadening our knowledge on the diversity of these parasites. RESULTS: Seven species (four known and three new) of Characidotrema are reported from two species of Brycinus: C. auritum n. sp. and C. vespertilio n. sp. from B. imberi (Peters); and C. brevipenis Paperna, 1969, C. nursei Ergens, 1973, C. pollex n. sp., C. spinivaginus (Paperna, 1973) and C. zelotes Kritsky, Kulo & Boeger, 1987 from B. nurse (Rüppell). Species identification was based on morphological analysis of the sclerotized structures supported by nuclear ribosomal DNA (partial 18S rDNA, ITS1, and 28S rDNA) sequence data. Morphological analysis confirmed that the most apparent character distinguishing species in the genus is the morphology of the male copulatory organ and vagina. Observations on the haptoral sclerotized elements of these parasites by means of phase contrast microscopy revealed the presence of a sheath-like structure relating to the ventral anchor, a feature that supplements the generic diagnosis of Characidotrema. Maximum Likelihood and Bayesian analyses of the large subunit (28S) rDNA sequences recovered Characidotrema species isolated from the two Brycinus hosts as monophyletic, and indicated a closer relationship of this group to monogeneans parasitizing African cyprinids (Dactylogyrus spp.) and cichlids (species of Cichlidogyrus Paperna, 1960, Scutogyrus Pariselle & Euzet, 1995, and Onchobdella Paperna, 1968) than to those from catfishes (species of Quadriacanthus Paperna, 1961, Schilbetrema Paperna & Thurston, 1968 and Synodontella Dossou & Euzet, 1993). The overall agreement between the morphological diversification of the MCOs and the molecular tree observed in this study indicates that significant phylogenetic signals for clarifying relationships among species of Characidotrema are present in the characteristics of the MCO. CONCLUSIONS: It seems that intra-host speciation is an important force shaping the present distribution and diversity of Characidotrema but further studies are necessary to confirm this hypothesis and assess questions related to the phylogeny of these parasites. To identify potential co-speciation events, co-phylogenetic analyses of these monogeneans and their alestid hosts are required.
See more in PubMed
Khalil LF, Polling L. Check list of the helminth parasites of African freshwater fishes. Pietersburg: University of the North; 1997.
Kičinjaová ML, Blažek R, Gelnar M, Řehulková E. Annulotrema (Monogenea: Dactylogyridae) from the gills of African tetras (Characiformes: Alestidae) in Lake Turkana, Kenya, with descriptions of four new species and a redescription of A. elongata Paperna and Thurston, 1969. Parasitol Res. 2015;114:4107–4120. doi: 10.1007/s00436-015-4682-x. PubMed DOI
Kritsky DC, Kulo SD, Boeger WA. Resurrection of Characidotrema Paperna and Thurston, 1968 (Monogenea: Dactylogyridae) with the description of two new species from Togo, Africa. Proc Helminthol Soc Wash. 1987;54:175–184.
Paperna I. New species of Monogenea (Vermes) from African freshwater fish. A preliminary report. Rev Zool Bot Afr. 1973;87:505–518.
Paperna I, Thurston JP. Monogenetic trematodes (Dactylogyridae) from fish in Uganda. Rev Zool Bot Afr. 1968;78:284–294.
Paperna I, Thurston JP. Annulotrema n. gen., a new genus of monogenetic trematodes (Dactylogyridae, Bychowski, 1933) from African characid fish. Zool Anz. 1933;1969(182):444–449.
Paperna I. Monogenetic trematodes of the fish of the Volta basin and South Ghana. Bull IFAN. 1969;31:840–880.
Paperna I. Monogenea of inland water fish in Africa. Ann Mus Roy Afrique Centr Sci Zool. 1979;226:1–131.
Ergens R. Characidotrema nursei sp. nov. from the gills of Alestes nurse from River Nile. (Vermes, Trematoda; Monogenoidea) Rev Zool Bot Afr. 1973;87:195–197.
Molnár K, Mossalam I. Monogenean parasites from fishes of the Nile in Egypt. Parasitol Hung. 1985;18:5–9.
Birgi E. Les monogenes de Characoidea de la zone forestiere Camerounaise. Ann Fac Sci Biol Bioch. 1988;111:59–111.
Froese R, Pauly D, editors. FishBase; 2018. http://www.fishbase.org. Accessed 22 Sept 2018.
Francová K, Seifertová M, Blažek R, Gelnar M, Mahmoud ZN, Řehulková E. Quadriacanthus species (Monogenea: Dactylogyridae) from catfishes (Teleostei: Siluriformes) in eastern Africa: new species, new records and first insights into interspecific genetic relationships. Parasit Vectors. 2017;10:361. doi: 10.1186/s13071-017-2223-4. PubMed DOI PMC
Mizelle JD. New species of trematodes from the gills of Illinois fishes. Am Midl Nat. 1936;17:785–806. doi: 10.2307/2420687. DOI
Ergens R. The suitability of ammonium picrate-glycerine in preparing slides of lower Monogenoidea. Folia Parasitol. 1969;16:320.
Pleijel F, Jondelius U, Norlinder E, Nygren A, Oxelman B, Schander C, et al. Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Mol Phylogenet Evol. 2008;48:369–371. doi: 10.1016/j.ympev.2008.03.024. PubMed DOI
Vanhove MPM, Tessens B, Schoelinck C, Jondelius U, Littlewood DTJ, Artois T, et al. Problematic barcoding in flatworms: a case-study on monogeneans and rhabdocoels (Platyhelminthes) ZooKeys. 2013 doi: 10.3897/zookeys.365.5776. PubMed DOI PMC
Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2017;1:1. doi: 10.1093/bib/bbx108. PubMed DOI PMC
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–98.
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC
Katoh K, Toh H. Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinform. 2008;9:212. doi: 10.1186/1471-2105-9-212. PubMed DOI PMC
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–552. doi: 10.1093/oxfordjournals.molbev.a026334. PubMed DOI
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucl Acids Res. 2016;44:232–235. doi: 10.1093/nar/gkw256. PubMed DOI PMC
Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 2013;30:1188–1195. doi: 10.1093/molbev/mst024. PubMed DOI PMC
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC
Rambaut A. FigTree (version 1.4.3). 2017.
ICZN International Commission on Zoological Nomenclature: amendment of articles 8, 9, 10, 21 and 78 of the international code of zoological nomenclature to expand and refine methods of publication. Bull Zool Nomencl. 2012;69:161–169. doi: 10.21805/bzn.v69i3.a8.161. PubMed DOI
Lim LHS, Gibson DI. Species of Triacanthinella Bychowsky & Nagibina, 1968 (Monogenea: Ancyrocephalidae) from triacanthid teleosts off Peninsular Malaysia, with a generic revision, amended diagnosis and key. Syst Parasitol. 2008;70:191–213. doi: 10.1007/s11230-008-9137-7. PubMed DOI
Beverley-Burton M, Klassen GJ. New approaches to the systematics of the ancyrocephalid Monogenea from Nearctic freshwater fishes. J Parasitol. 1990;76:1–12. doi: 10.2307/3282620. PubMed DOI
Beverley-Burton M. Monogenea and Turbellaria. In: Margolis L, Kabata Z, editors. Part I Guide to the parasites of fishes of Canada. Canadian Special Publication of Fisheries and Aquatic Sciences. 1984;74:5–209.
Řehulková E, Gelnar M. A revised diagnosis of Thylacicleidus (Monogenea: Dactylogyridae) with a redescription of the type-species, Thylacicleidus serendipitus, and descriptions of two new species from Southeast Asian pufferfishes (Tetraodontiformes: Tetraodontidae) J Parasitol. 2005;91:794–807. doi: 10.1645/GE-3444.1. PubMed DOI
Rohde K. A critical evaluation of intrinsic and extrinsic factors responsible for niche restriction in parasites. Am Nat. 1979;114:648–671. doi: 10.1086/283514. DOI
Rohde K, Hobbs RP. Species segregation: competition or reinforcement of reproductive barriers? In: Cremin M, Dobson C, Noorhouse E, editors. Parasites lives: papers on parasites, their hosts and their associations to in honour of JFA Sprent. St. Lucia: University of Queensland Press; 1986. pp. 189–199.
Rohde K. Simple ecological systems, simple solutions to complex problems? Evol Theory. 1989;8:305–350.
Jarkovský J, Morand S, Šimková A, Gelnar M. Reproductive barriers between congeneric monogenean parasites (Dactylogyrus: Monogenea): attachment apparatus morphology or copulatory organ incompatibility? Parasitol Res. 2004;92:95–105. doi: 10.1007/s00436-003-0993-4. PubMed DOI
Murray AM, Stewart KM. Phylogenetic relationships of the African genera Alestes and Brycinus (Teleostei, Characiformes, Alestidae) Can J Zool. 2002;80:1887–1899. doi: 10.1139/z02-168. DOI
Hubert N, Bonillo C, Paugy D. Early divergence among the Alestidae (Teleostei, Ostariophyses, Characiformes): mitochondrial evidences and congruence with morphological data. C R Biol. 2005;328:477–491. doi: 10.1016/j.crvi.2005.02.005. PubMed DOI
Calcagnotto D, Schaefer SA, DeSalle R. Relationships among characiform fishes inferred from analysis of nuclear and mitochondrial gene sequences. Mol Phylogenet Evol. 2005;36:135–153. doi: 10.1016/j.ympev.2005.01.004. PubMed DOI
Arroyave J, Stiassny MLJ. Phylogenetic relationships and the temporal context for the diversification of African characins of the family Alestidae (Ostariophysi: Characiformes): Evidence from DNA sequences data. Mol Phylogenet Evol. 2011;60:385–397. doi: 10.1016/j.ympev.2011.04.016. PubMed DOI
Paugy D. Révision systématique des Alestes et Brycinus Africains (Pisces, Characidae). Collection Études et Théses. Paris: Éditions de l’ORSTOM; 1986.
Tirard C, Berrebi P, Raibaut A, Frenaud F. Parasites as biological markers—evolutionary relationships in the heterospecific combination of helminths (monogeneans) and teleosts (Gadidae) Biol J Linn Soc. 1992;47:173–182. doi: 10.1111/j.1095-8312.1992.tb00663.x. DOI
Thomas F, Verneau O, de Meeûs T, Renaud F. Parasites as to host evolutionary prints: insights into host evolution from parasitological data. Int J Parasitol. 1996;26:677–686. doi: 10.1016/0020-7519(96)00023-9. PubMed DOI
Sinnappah ND, Lim LHS, Rohde K, Tinsley R, Combes C, Verneau O. A paedomorphic parasite associated with a neotenic amphibian host: phylogenetic evidence suggests a revised systematic position for Sphyranuridae within anuran and turtle Polystomatoineans. Mol Phylogenet Evol. 2001;18:189–201. doi: 10.1006/mpev.2000.0877. PubMed DOI
Šimková A, Plaisance L, Matějusová I, Morand S, Verneau O. Phylogenetic relationships of the Dactylogyridae Bychowsky, 1933 (Monogenea: Dactylogyridae): the need for the systematic revision of the Ancyrocephalinae Bychowsky, 1937. Syst Parasitol. 2003;54:1–11. doi: 10.1023/A:1022133608662. PubMed DOI
Hassouna N, Michot B, Bachellerie JP. The complete nucleotide sequence of mouse 28S rRNA gene Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucleic Acids Res. 1984;12:3563–3583. doi: 10.1093/nar/12.8.3563. PubMed DOI PMC