Photoprotective strategies in the motile cryptophyte alga Rhodomonas salina-role of non-photochemical quenching, ions, photoinhibition, and cell motility
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
GACR 16-10088S
Grantová Agentura České Republiky
17-02363Y
Grantová Agentura České Republiky
MSMT LO1416
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ 503 1.05/2.1.00/19.0392
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31352667
DOI
10.1007/s12223-019-00742-y
PII: 10.1007/s12223-019-00742-y
Knihovny.cz E-resources
- MeSH
- Chlorophyll A metabolism MeSH
- Chlorophyll metabolism MeSH
- Cryptophyta cytology metabolism radiation effects MeSH
- Photosystem II Protein Complex metabolism MeSH
- Cell Movement radiation effects MeSH
- Light MeSH
- Calcium metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Chlorophyll A MeSH
- Chlorophyll MeSH
- chlorophyll c MeSH Browser
- Photosystem II Protein Complex MeSH
- Calcium MeSH
We explored photoprotective strategies in a cryptophyte alga Rhodomonas salina. This cryptophytic alga represents phototrophs where chlorophyll a/c antennas in thylakoids are combined with additional light-harvesting system formed by phycobiliproteins in the chloroplast lumen. The fastest response to excessive irradiation is induction of non-photochemical quenching (NPQ). The maximal NPQ appears already after 20 s of excessive irradiation. This initial phase of NPQ is sensitive to Ca2+ channel inhibitor (diltiazem) and disappears, also, in the presence of non-actin, an ionophore for monovalent cations. The prolonged exposure to high light of R. salina cells causes photoinhibition of photosystem II (PSII) that can be further enhanced when Ca2+ fluxes are inhibited by diltiazem. The light-induced reduction in PSII photochemical activity is smaller when compared with immotile diatom Phaeodactylum tricornutum. We explain this as a result of their different photoprotective strategies. Besides the protective role of NPQ, the motile R. salina also minimizes high light exposure by increased cell velocity by almost 25% percent (25% from 82 to 104 μm/s). We suggest that motility of algal cells might have a photoprotective role at high light because algal cell rotation around longitudinal axes changes continual irradiation to periodically fluctuating light.
See more in PubMed
PLoS One. 2010 Jun 08;5(6):e11000 PubMed
Plant Cell. 2011 Aug;23(8):2950-63 PubMed
Sci Rep. 2015 Sep 01;5:13679 PubMed
Biochim Biophys Acta. 2011 Jul;1807(7):841-6 PubMed
FEBS Lett. 2002 Jul 17;523(1-3):163-6 PubMed
Philos Trans R Soc Lond B Biol Sci. 2014 Mar 03;369(1640):20130221 PubMed
J Exp Bot. 2005 Jan;56(411):347-56 PubMed
Plant Physiol. 2006 Jun;141(2):391-6 PubMed
Plant Physiol. 1978 May;61(5):816-8 PubMed
Plant J. 2010 Jan;61(2):283-9 PubMed
Planta. 1997;203(3):265-74 PubMed
Nature. 2009 Nov 26;462(7272):518-21 PubMed
Sci Rep. 2016 Feb 18;6:21339 PubMed
Plant J. 2013 Nov;76(4):568-79 PubMed
Plant Physiol. 1998 Dec;118(4):1447-54 PubMed
J Am Chem Soc. 2013 Dec 11;135(49):18339-42 PubMed
Science. 2015 Aug 7;349(6248):647-50 PubMed
Photosynth Res. 2008 Oct-Dec;98(1-3):565-74 PubMed
Biochim Biophys Acta. 1956 Aug;21(2):234-44 PubMed
Plant Physiol. 2010 Dec;154(4):1905-20 PubMed
Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):13940-5 PubMed
Nat Chem Biol. 2015 Apr;11(4):287-91 PubMed
Science. 2008 May 9;320(5877):794-7 PubMed
Biochim Biophys Acta. 2015 Sep;1847(9):993-1003 PubMed
Physiol Plant. 2019 May;166(1):309-319 PubMed
Mol Plant. 2016 Aug 1;9(8):1183-1196 PubMed
Proc Natl Acad Sci U S A. 2014 May 20;111(20):7480-5 PubMed
PLoS One. 2012;7(1):e29700 PubMed
Photosynth Res. 2004;80(1-3):245-63 PubMed
Photosynth Res. 2011 Jan;107(1):103-15 PubMed
Photosynth Res. 2002 Oct;74(1):51-59 PubMed
Photosynth Res. 2000;65(2):141-54 PubMed
J Biol Chem. 2009 May 29;284(22):15255-66 PubMed
Photosynth Res. 2018 Mar;135(1-3):263-274 PubMed
Phys Chem Chem Phys. 2013 Aug 7;15(29):12253-61 PubMed
J Biol Chem. 2018 Apr 6;293(14):5018-5025 PubMed
Photosynth Res. 2008 Oct-Dec;98(1-3):589-608 PubMed
J Proteome Res. 2011 Dec 2;10(12):5338-53 PubMed
Trends Plant Sci. 2009 Apr;14(4):200-5 PubMed
Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12311-6 PubMed
Biophys J. 2012 Jun 20;102(12):2761-71 PubMed
Biochim Biophys Acta. 2012 Jan;1817(1):258-65 PubMed
Plant Physiol. 1999 Apr;119(4):1379-86 PubMed
Plant Physiol. 1994 Oct;106(2):763-770 PubMed
Biochemistry. 2006 Feb 7;45(5):1490-8 PubMed
Nature. 2012 Dec 6;492(7427):59-65 PubMed
J Exp Bot. 2005 Jan;56(411):365-73 PubMed
Biochim Biophys Acta. 2013 Mar;1827(3):294-302 PubMed
FEBS Lett. 2009 Feb 18;583(4):670-4 PubMed
Biochim Biophys Acta. 2012 Jan;1817(1):232-8 PubMed
Plant Cell Physiol. 2017 Dec 1;58(12):2217-2225 PubMed
Biochim Biophys Acta. 2015 Apr-May;1847(4-5):468-485 PubMed
Plant Cell Physiol. 2006 Jul;47(7):1010-6 PubMed
Physiol Plant. 2011 May;142(1):6-16 PubMed
Plant Physiol. 1987 May;84(1):178-81 PubMed
Biochim Biophys Acta. 2016 Jun;1857(6):840-7 PubMed
Front Plant Sci. 2016 Dec 16;7:1849 PubMed
Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):2213-8 PubMed
Plant Physiol. 2002 Jul;129(3):1398-406 PubMed
J Plant Physiol. 2015 Jan 1;172:13-32 PubMed
FEBS Lett. 2016 Apr;590(8):1076-85 PubMed
Biochim Biophys Acta. 2012 Jan;1817(1):167-81 PubMed
Nat Chem Biol. 2014 Jul;10(7):492-501 PubMed
New Phytol. 2010 Jul;187(1):23-43 PubMed
Biochim Biophys Acta. 2009 Jan;1787(1):3-14 PubMed
Mol Biol Cell. 2002 Sep;13(9):3303-13 PubMed
J Bioenerg Biomembr. 2002 Dec;34(6):455-64 PubMed
PLoS One. 2012;7(10):e47036 PubMed
J Exp Bot. 2018 Aug 14;69(18):4483-4493 PubMed
Biochim Biophys Acta. 1975 Jun 11;394(1):76-92 PubMed
Nat Plants. 2015 Nov 09;1:15168 PubMed
Photosynth Res. 1993 Aug;37(2):117-30 PubMed
Curr Opin Plant Biol. 2017 Jun;37:102-108 PubMed
Plant Cell. 1998 Jul;10(7):1121-34 PubMed
Plant J. 2010 Jun 1;62(6):948-59 PubMed
J Biol Chem. 2009 Sep 11;284(37):25343-52 PubMed
Nat Commun. 2016 May 24;7:11654 PubMed
J Biol Chem. 2016 Apr 1;291(14):7334-46 PubMed
Biochemistry. 2003 May 20;42(19):5802-8 PubMed
Biochim Biophys Acta. 2012 Jan;1817(1):209-17 PubMed
Biochim Biophys Acta. 2012 Jan;1817(1):247-57 PubMed
Nature. 2000 Jan 27;403(6768):391-5 PubMed
J Biol Chem. 2002 Jun 21;277(25):22750-8 PubMed
Plant Physiol. 2001 Apr;125(4):1558-66 PubMed
J Biol Chem. 2006 Jan 13;281(2):1145-51 PubMed
Nature. 2007 Nov 22;450(7169):575-8 PubMed
FEBS Lett. 2011 Jun 23;585(12):1941-5 PubMed
Biophys J. 2005 Dec;89(6):4310-9 PubMed
Biophys J. 2004 Apr;86(4):2342-9 PubMed
Front Plant Sci. 2016 Feb 09;7:115 PubMed
J Biol Chem. 2013 Aug 9;288(32):23529-42 PubMed
FEBS J. 2008 Mar;275(6):1069-79 PubMed
J Exp Bot. 2015 Oct;66(20):6461-70 PubMed
Science. 2013 Oct 4;342(6154):114-8 PubMed
Plant Physiol. 2007 Feb;143(2):629-38 PubMed
Plant Cell Environ. 2015 Oct;38(10):2035-47 PubMed
Plant Physiol. 1995 Jun;108(2):721-726 PubMed
Biochim Biophys Acta. 2000 Jun 1;1466(1-2):187-204 PubMed
Photosynth Res. 2007 Jun;92(3):275-87 PubMed
Front Plant Sci. 2016 Feb 29;7:218 PubMed
Photosynth Res. 1994 Sep;41(3):371-9 PubMed
Plant Physiol. 2000 Feb;122(2):583-96 PubMed
Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13516-21 PubMed
Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):2988-2993 PubMed
J Exp Bot. 2005 Jan;56(411):395-406 PubMed
Photosynth Res. 2002;72(3):271-84 PubMed
Annu Rev Plant Biol. 2009;60:239-60 PubMed
Proc Jpn Acad Ser B Phys Biol Sci. 2016;92(9):387-411 PubMed
Biochim Biophys Acta. 2009 Jul;1787(7):929-38 PubMed
Science. 2009 Jul 24;325(5939):487-90 PubMed
Ann Bot. 2018 Dec 31;122(7):1263-1278 PubMed
J Photochem Photobiol B. 2011 Jul-Aug;104(1-2):377-85 PubMed
Science. 2002 Jun 28;296(5577):2395-8 PubMed
Biochem Soc Trans. 2018 Oct 19;46(5):1263-1277 PubMed
Nat Commun. 2014 Nov 13;5:5439 PubMed
Biol Chem. 2007 Sep;388(9):927-35 PubMed
New Phytol. 2009 Jan;181(2):275-294 PubMed
Trends Plant Sci. 2018 Aug;23(8):667-676 PubMed
J Biol Chem. 2000 Apr 28;275(17):12781-8 PubMed
Proc Natl Acad Sci U S A. 2010 May 11;107(19):8860-5 PubMed
Science. 2005 Jan 21;307(5708):433-6 PubMed
Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):14204-9 PubMed
Special issue dedicated to the memory of Ivan Šetlík