What Is the Role of Imaging at Primary Diagnostic Work-Up in Uterine Cervical Cancer?

. 2019 Jul 29 ; 21 (9) : 77. [epub] 20190729

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31359169
Odkazy

PubMed 31359169
PubMed Central PMC6663927
DOI 10.1007/s11912-019-0824-0
PII: 10.1007/s11912-019-0824-0
Knihovny.cz E-zdroje

PURPOSE OF REVIEW: For uterine cervical cancer, the recently revised International Federation of Gynecology and Obstetrics (FIGO) staging system (2018) incorporates imaging and pathology assessments in its staging. In this review we summarize the reported staging performances of conventional and novel imaging methods and provide an overview of promising novel imaging methods relevant for cervical cancer patient care. RECENT FINDINGS: Diagnostic imaging during the primary diagnostic work-up is recommended to better assess tumor extent and metastatic disease and is now reflected in the 2018 FIGO stages 3C1 and 3C2 (positive pelvic and/or paraaortic lymph nodes). For pretreatment local staging, imaging by transvaginal or transrectal ultrasound (TVS, TRS) and/or magnetic resonance imaging (MRI) is instrumental to define pelvic tumor extent, including a more accurate assessment of tumor size, stromal invasion depth, and parametrial invasion. In locally advanced cervical cancer, positron emission tomography-computed tomography (PET-CT) or computed tomography (CT) is recommended, since the identification of metastatic lymph nodes and distant metastases has therapeutic consequences. Furthermore, novel imaging techniques offer visualization of microstructural and functional tumor characteristics, reportedly linked to clinical phenotype, thus with a potential for further improving risk stratification and individualization of treatment. Diagnostic imaging by MRI/TVS/TRS and PET-CT/CT is instrumental for pretreatment staging in uterine cervical cancer and guides optimal treatment strategy. Novel imaging techniques may also provide functional biomarkers with potential relevance for developing more targeted treatment strategies in cervical cancer.

Zobrazit více v PubMed

International Agency for Research on Cancer. http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx. 2018. Accessed 11 July 2018.

Pecorelli S. Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium. Int J Gynaecol Obstet. 2009;105(2):103–104. doi: 10.1016/j.ijgo.2009.02.012. PubMed DOI

Bhatla N, Berek JS, Cuello Fredes M, Denny LA, Grenman S, Karunaratne K, et al. Revised FIGO staging for carcinoma of the cervix uteri. Int J Gynaecol Obstet. 2019;145(1):129–135. doi: 10.1002/ijgo.12749. PubMed DOI

Pfaendler KS, Tewari KS. Changing paradigms in the systemic treatment of advanced cervical cancer. Am J Obstet Gynecol. 2016;214(1):22–30. doi: 10.1016/j.ajog.2015.07.022. PubMed DOI PMC

ESGO-ESTRO-ESP cervical cancer guidelines. https://guidelines.esgo.org/cervical-cancer/guidelines/recommendations/. ESGO. 2018. Accessed 11 July 2018.

Brierley JDGM, Wittekind C. TNM classification of malignant tumours, 8th Edition. Gynaecological Tumours. Hoboken: Wiley-Blackwell Ltd; 2017. pp. 159–186.

National Comprehensive Cancer Network https://www.nccn.org/professionals/physician_gls/default.aspx. 2018. Accessed 11 July 2018.

Hameeduddin A, Sahdev A. Diffusion-weighted imaging and dynamic contrast-enhanced MRI in assessing response and recurrent disease in gynaecological malignancies. Cancer Imaging. 2015;15:3. doi: 10.1186/s40644-015-0037-1. PubMed DOI PMC

Bell DJ, Pannu HK. Radiological assessment of gynecologic malignancies. Obstet Gynecol Clin N Am. 2011;38(1):45–68. doi: 10.1016/j.ogc.2011.02.003. PubMed DOI

Testa AC, Di LA, De Blasis I, Moruzzi MC, Bonatti M, Collarino A, et al. Imaging techniques for the evaluation of cervical cancer. Best Pract Res Clin Obstet Gynaecol. 2014;28(5):741–768. doi: 10.1016/j.bpobgyn.2014.04.009. PubMed DOI

Cibula D, Potter R, Planchamp F, Avall-Lundqvist E, Fischerova D, Haie Meder C, et al. The European Society of Gynaecological Oncology/European Society for Radiotherapy and Oncology/European Society of Pathology Guidelines for the management of patients with cervical cancer. Int J Gynecol Cancer. 2018;28(4):641–655. doi: 10.1097/IGC.0000000000001216. PubMed DOI

Herrera FG, Prior JO. The role of PET/CT in cervical cancer. Front Oncol. 2013;3:34. doi: 10.3389/fonc.2013.00034. PubMed DOI PMC

Choi HJ, Ju W, Myung SK, Kim Y. Diagnostic performance of computer tomography, magnetic resonance imaging, and positron emission tomography or positron emission tomography/computer tomography for detection of metastatic lymph nodes in patients with cervical cancer: meta-analysis. Cancer Sci. 2010;101(6):1471–1479. doi: 10.1111/j.1349-7006.2010.01532.x. PubMed DOI PMC

Kitajima K, Murakami K, Yamasaki E, Kaji Y, Sugimura K. Accuracy of integrated FDG-PET/contrast-enhanced CT in detecting pelvic and paraaortic lymph node metastasis in patients with uterine cancer. Eur Radiol. 2009;19(6):1529–1536. doi: 10.1007/s00330-008-1271-8. PubMed DOI

Tsunoda AT, Marnitz S, Soares Nunes J, Mattos de Cunha Andrade CE, Scapulatempo Neto C, Blohmer JU, et al. Incidence of histologically proven pelvic and para-aortic lymph node metastases and rate of upstaging in patients with locally advanced cervical cancer: results of a prospective randomized trial. Oncology. 2017;92(4):213–220. doi: 10.1159/000453666. PubMed DOI

Jurado M, Galvan R, Martinez-Monge R, Mazaira J, Alcazar JL. Neoangiogenesis in early cervical cancer: correlation between color Doppler findings and risk factors. A prospective observational study. World J Surg Oncol. 2008;6:126. doi: 10.1186/1477-7819-6-126. PubMed DOI PMC

Nakamura K, Joja I, Kodama J, Hongo A, Hiramatsu Y. Measurement of SUVmax plus ADCmin of the primary tumour is a predictor of prognosis in patients with cervical cancer. Eur J Nucl Med Mol Imaging. 2012;39(2):283–290. doi: 10.1007/s00259-011-1978-7. PubMed DOI

Nakamura K, Joja I, Nagasaka T, Fukushima C, Kusumoto T, Seki N, et al. The mean apparent diffusion coefficient value (ADCmean) on primary cervical cancer is a predictive marker for disease recurrence. Gynecol Oncol. 2012;127(3):478–483. doi: 10.1016/j.ygyno.2012.07.123. PubMed DOI

Kuang F, Ren J, Zhong Q, Liyuan F, Huan Y, Chen Z. The value of apparent diffusion coefficient in the assessment of cervical cancer. Eur Radiol. 2013;23(4):1050–1058. doi: 10.1007/s00330-012-2681-1. PubMed DOI

Andersen EK, Hole KH, Lund KV, Sundfor K, Kristensen GB, Lyng H, et al. Dynamic contrast-enhanced MRI of cervical cancers: temporal percentile screening of contrast enhancement identifies parameters for prediction of chemoradioresistance. Int J Radiat Oncol Biol Phys. 2012;82(3):e485–ee92. doi: 10.1016/j.ijrobp.2011.05.050. PubMed DOI

Andersen EK, Hole KH, Lund KV, Sundfor K, Kristensen GB, Lyng H, et al. Pharmacokinetic parameters derived from dynamic contrast enhanced MRI of cervical cancers predict chemoradiotherapy outcome. Radiother Oncol. 2013;107(1):117–122. doi: 10.1016/j.radonc.2012.11.007. PubMed DOI

Lund KV, Simonsen TG, Hompland T, Kristensen GB, Rofstad EK. Short-term pretreatment DCE-MRI in prediction of outcome in locally advanced cervical cancer. Radiother Oncol. 2015;115(3):379–385. doi: 10.1016/j.radonc.2015.05.001. PubMed DOI

Herrera FG, Breuneval T, Prior JO, Bourhis J, Ozsahin M. [(18)F]FDG-PET/CT metabolic parameters as useful prognostic factors in cervical cancer patients treated with chemo-radiotherapy. Radiat Oncol. 2016;11:43. doi: 10.1186/s13014-016-0614-x. PubMed DOI PMC

Sarabhai T, Schaarschmidt BM, Wetter A, Kirchner J, Aktas B, Forsting M, et al. Comparison of (18)F-FDG PET/MRI and MRI for pre-therapeutic tumor staging of patients with primary cancer of the uterine cervix. Eur J Nucl Med Mol Imaging. 2018;45(1):67–76. doi: 10.1007/s00259-017-3809-y. PubMed DOI

Grueneisen J, Schaarschmidt BM, Heubner M, Aktas B, Kinner S, Forsting M, Lauenstein T, Ruhlmann V, Umutlu L. Integrated PET/MRI for whole-body staging of patients with primary cervical cancer: preliminary results. Eur J Nucl Med Mol Imaging. 2015;42(12):1814–1824. doi: 10.1007/s00259-015-3131-5. PubMed DOI

Chai Y, Wang T, Wang J, Yang Y, Gao Y, Gao J, Gao S, Wang Y, Zhou X, Liu Z. Radical hysterectomy with adjuvant radiotherapy versus radical radiotherapy for FIGO stage IIB cervical cancer. BMC Cancer. 2014;14:63. doi: 10.1186/1471-2407-14-63. PubMed DOI PMC

Kuroda K, Yamamoto Y, Yanagisawa M, Kawata A, Akiba N, Suzuki K, Naritaka K. Risk factors and a prediction model for lower limb lymphedema following lymphadenectomy in gynecologic cancer: a hospital-based retrospective cohort study. BMC Womens Health. 2017;17(1):50. doi: 10.1186/s12905-017-0403-1. PubMed DOI PMC

Takekuma M, Kasamatsu Y, Kado N, Kuji S, Tanaka A, Takahashi N, Abe M, Hirashima Y. Adjuvant chemotherapy versus concurrent chemoradiotherapy for high-risk cervical cancer after radical hysterectomy and systematic lymphadenectomy. Int J Clin Oncol. 2016;21(4):741–747. doi: 10.1007/s10147-016-0955-3. PubMed DOI

Waggoner SE. Cervical cancer. Lancet. 2003;361(9376):2217–2225. doi: 10.1016/S0140-6736(03)13778-6. PubMed DOI

Berman ML, Keys H, Creasman W, DiSaia P, Bundy B, Blessing J. Survival and patterns of recurrence in cervical cancer metastatic to periaortic lymph nodes (a Gynecologic Oncology Group study) Gynecol Oncol. 1984;19(1):8–16. doi: 10.1016/0090-8258(84)90151-3. PubMed DOI

Farley JH, Hickey KW, Carlson JW, Rose GS, Kost ER, Harrison TA. Adenosquamous histology predicts a poor outcome for patients with advanced-stage, but not early-stage, cervical carcinoma. Cancer. 2003;97(9):2196–2202. doi: 10.1002/cncr.11371. PubMed DOI

Hou WH, Schultheiss TE, Wong JY, Wakabayashi MT, Chen YJ. Surgery versus radiation treatment for high-grade neuroendocrine cancer of uterine cervix: a surveillance epidemiology and end results database analysis. Int J Gynecol Cancer. 2018;28(1):188–193. doi: 10.1097/IGC.0000000000001143. PubMed DOI

Marth C, Landoni F, Mahner S, McCormack M, Gonzalez-Martin A, Colombo N, et al. Cervical cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(suppl_4):iv72–iv83. doi: 10.1093/annonc/mdx220. PubMed DOI

Greer BE, Koh WJ, Abu-Rustum NR, Apte SM, Campos SM, Chan J, et al. Cervical cancer. J Natl Compr Cancer Netw. 2010;8(12):1388–1416. doi: 10.6004/jnccn.2010.0104. PubMed DOI

Lee SI, Catalano OA, Dehdashti F. Evaluation of gynecologic cancer with MR imaging, 18F-FDG PET/CT, and PET/MR imaging. J Nucl Med. 2015;56(3):436–443. doi: 10.2967/jnumed.114.145011. PubMed DOI

Van de Putte G, Lie AK, Vach W, Baekelandt M, Kristensen GB. Risk grouping in stage IB squamous cell cervical carcinoma. Gynecol Oncol. 2005;99(1):106–112. doi: 10.1016/j.ygyno.2005.05.026. PubMed DOI

Sedlis A, Bundy BN, Rotman MZ, Lentz SS, Muderspach LI, Zaino RJ. A randomized trial of pelvic radiation therapy versus no further therapy in selected patients with stage IB carcinoma of the cervix after radical hysterectomy and pelvic lymphadenectomy: a Gynecologic Oncology Group Study. Gynecol Oncol. 1999;73(2):177–183. doi: 10.1006/gyno.1999.5387. PubMed DOI

Palsdottir K, Fischerova D, Franchi D, Testa A, Di LA, Epstein E. Preoperative prediction of lymph node metastasis and deep stromal invasion in women with invasive cervical cancer: prospective multicenter study using 2D and 3D ultrasound. Ultrasound Obstet Gynecol. 2015;45(4):470–475. doi: 10.1002/uog.14643. PubMed DOI

Fischerova D, Cibula D, Stenhova H, Vondrichova H, Calda P, Zikan M, et al. Transrectal ultrasound and magnetic resonance imaging in staging of early cervical cancer. Int J Gynecol Cancer. 2008;18(4):766–772. doi: 10.1111/j.1525-1438.2007.01072.x. PubMed DOI

Epstein E, Testa A, Gaurilcikas A, Di LA, Ameye L, Atstupenaite V, et al. Early-stage cervical cancer: tumor delineation by magnetic resonance imaging and ultrasound - a European multicenter trial. Gynecol Oncol. 2013;128(3):449–453. doi: 10.1016/j.ygyno.2012.09.025. PubMed DOI

Innocenti P, Pulli F, Savino L, Nicolucci A, Pandimiglio A, Menchi I, et al. Staging of cervical cancer: reliability of transrectal US. Radiology. 1992;185(1):201–205. doi: 10.1148/radiology.185.1.1523308. PubMed DOI

Bipat S, Glas AS, van der Velden J, Zwinderman AH, Bossuyt PM, Stoker J. Computed tomography and magnetic resonance imaging in staging of uterine cervical carcinoma: a systematic review. Gynecol Oncol. 2003;91(1):59–66. doi: 10.1016/S0090-8258(03)00409-8. PubMed DOI

Selman TJ, Mann C, Zamora J, Appleyard TL, Khan K. Diagnostic accuracy of tests for lymph node status in primary cervical cancer: a systematic review and meta-analysis. CMAJ. 2008;178(7):855–862. doi: 10.1503/cmaj.071124. PubMed DOI PMC

Hricak H, Gatsonis C, Coakley FV, Snyder B, Reinhold C, Schwartz LH, et al. Early invasive cervical cancer: CT and MR imaging in preoperative evaluation - ACRIN/GOG comparative study of diagnostic performance and interobserver variability. Radiology. 2007;245(2):491–498. doi: 10.1148/radiol.2452061983. PubMed DOI

Canaz E, Ozyurek ES, Erdem B, Aldikactioglu Talmac M, Yildiz Ozaydin I, Akbayir O, Numanoglu C, Ulker V. Preoperatively assessable clinical and pathological risk factors for parametrial involvement in surgically treated FIGO stage IB-IIA Cervical Cancer. Int J Gynecol Cancer. 2017;27(8):1722–1728. doi: 10.1097/IGC.0000000000001060. PubMed DOI

Shen G, Zhou H, Jia Z, Deng H. Diagnostic performance of diffusion-weighted MRI for detection of pelvic metastatic lymph nodes in patients with cervical cancer: a systematic review and meta-analysis. Br J Radiol. 2015;88(1052):20150063. doi: 10.1259/bjr.20150063. PubMed DOI

Park JJ, Kim CK, Park SY, Park BK, Kim B. Value of diffusion-weighted imaging in predicting parametrial invasion in stage IA2-IIA cervical cancer. Eur Radiol. 2014;24(5):1081–1088. doi: 10.1007/s00330-014-3109-x. PubMed DOI

Qu JR, Qin L, Li X, Luo JP, Li J, Zhang HK, et al. Predicting parametrial invasion in cervical carcinoma (stages IB1, IB2, and IIA): diagnostic accuracy of T2-weighted imaging combined with DWI at 3 T. AJR Am J Roentgenol. 2018;210(3):677–684. doi: 10.2214/AJR.17.18104. PubMed DOI

Rockall AG, Sohaib SA, Harisinghani MG, Babar SA, Singh N, Jeyarajah AR, et al. Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer. J Clin Oncol. 2005;23(12):2813–2821. doi: 10.1200/JCO.2005.07.166. PubMed DOI

Kang S, Kim SK, Chung DC, Seo SS, Kim JY, Nam BH, et al. Diagnostic value of (18)F-FDG PET for evaluation of paraaortic nodal metastasis in patients with cervical carcinoma: a metaanalysis. J Nucl Med. 2010;51(3):360–367. doi: 10.2967/jnumed.109.066217. PubMed DOI

Salvo G, Ramirez PT, Levenback CF, Munsell MF, Euscher ED, Soliman PT, Frumovitz M. Sensitivity and negative predictive value for sentinel lymph node biopsy in women with early-stage cervical cancer. Gynecol Oncol. 2017;145(1):96–101. doi: 10.1016/j.ygyno.2017.02.005. PubMed DOI PMC

Papadia A, Gasparri ML, Genoud S, Bernd K, Mueller MD. The combination of preoperative PET/CT and sentinel lymph node biopsy in the surgical management of early-stage cervical cancer. J Cancer Res Clin Oncol. 2017;143(11):2275–2281. doi: 10.1007/s00432-017-2467-6. PubMed DOI PMC

Epstein E, Di Legge A, Masback A, Lindqvist PG, Kannisto P, Testa AC. Sonographic characteristics of squamous cell cancer and adenocarcinoma of the uterine cervix. Ultrasound Obstet Gynecol. 2010;36(4):512–516. doi: 10.1002/uog.7638. PubMed DOI

Pinkavova I, Fischerova D, Zikan M, Burgetova A, Slama J, Svarovsky J, Dundr P, Dusek L, Cibula D. Transrectal ultrasound and magnetic resonance imaging in the evaluation of tumor size following neoadjuvant chemotherapy for locally advanced cervical cancer. Ultrasound Obstet Gynecol. 2013;42(6):705–712. doi: 10.1002/uog.12455. PubMed DOI

Balleyguier C, Sala E, Da CT, Bergman A, Brkljacic B, Danza F, et al. Staging of uterine cervical cancer with MRI: guidelines of the European Society of Urogenital Radiology. Eur Radiol. 2011;21(5):1102–1110. doi: 10.1007/s00330-010-1998-x. PubMed DOI

Sala E, Rockall A, Rangarajan D, Kubik-Huch RA. The role of dynamic contrast-enhanced and diffusion weighted magnetic resonance imaging in the female pelvis. Eur J Radiol. 2010;76(3):367–385. doi: 10.1016/j.ejrad.2010.01.026. PubMed DOI

Sala E, Rockall AG, Freeman SJ, Mitchell DG, Reinhold C. The added role of MR imaging in treatment stratification of patients with gynecologic malignancies: what the radiologist needs to know. Radiology. 2013;266(3):717–740. doi: 10.1148/radiol.12120315. PubMed DOI

He H, Bhosale P, Wei W, Ramalingam P, Iyer R. MRI is highly specific in determining primary cervical versus endometrial cancer when biopsy results are inconclusive. Clin Radiol. 2013;68(11):1107–1113. doi: 10.1016/j.crad.2013.05.095. PubMed DOI

Whittaker CS, Coady A, Culver L, Rustin G, Padwick M, Padhani AR. Diffusion-weighted MR imaging of female pelvic tumors: a pictorial review. Radiographics. 2009;29(3):759–774. doi: 10.1148/rg.293085130. PubMed DOI

Bollineni VR, Kramer G, Liu Y, Melidis C, de Souza NM. A literature review of the association between diffusion-weighted MRI derived apparent diffusion coefficient and tumour aggressiveness in pelvic cancer. Cancer Treat Rev. 2015;41(6):496–502. doi: 10.1016/j.ctrv.2015.03.010. PubMed DOI

Exner M, Kuhn A, Stumpp P, Hockel M, Horn LC, Kahn T, et al. Value of diffusion-weighted MRI in diagnosis of uterine cervical cancer: a prospective study evaluating the benefits of DWI compared to conventional MR sequences in a 3T environment. Acta Radiol. 2016;57(7):869–877. doi: 10.1177/0284185115602146. PubMed DOI

Lee JH, Lee SW, Kim JR, Kim YS, Yoon MS, Jeong S, et al. Tumour size, volume, and marker expression during radiation therapy can predict survival of cervical cancer patients: a multi-institutional retrospective analysis of KROG 16-01. Gynecol Oncol. 2017;147(3):577–584. doi: 10.1016/j.ygyno.2017.09.036. PubMed DOI

Chong GO, Lee WK, Jeong SY, Park SH, Lee YH, Lee SW, et al. Prognostic value of intratumoral metabolic heterogeneity on F-18 fluorodeoxyglucose positron emission tomography/computed tomography in locally advanced cervical cancer patients treated with concurrent chemoradiotherapy. Oncotarget. 2017;8(52):90402–90412. doi: 10.18632/oncotarget.18769. PubMed DOI PMC

Testa AC, Ferrandina G, Moro F, Pasciuto T, Moruzzi MC, De Blasis I, et al. PRospective Imaging of CErvical cancer and neoadjuvant treatment (PRICE) study: role of ultrasound to predict partial response in locally advanced cervical cancer patients undergoing chemoradiation and radical surgery. Ultrasound Obstet Gynecol. 2018;51(5):684–695. doi: 10.1002/uog.17551. PubMed DOI

Karunya RJ, Tharani P, John S, Kumar RM, Das S. Role of functional magnetic resonance imaging derived parameters as imaging biomarkers and correlation with clinicopathological features in carcinoma of uterine cervix. J Clin Diagn Res. 2017;11(8):XC06–XC11. doi: 10.7860/JCDR/2017/29165.10426. PubMed DOI PMC

Becker AS, Ghafoor S, Marcon M, Perucho JA, Wurnig MC, Wagner MW, Khong PL, Lee EYP, Boss A. MRI texture features may predict differentiation and nodal stage of cervical cancer: a pilot study. Acta Radiol Open. 2017;6(10):2058460117729574. doi: 10.1177/2058460117729574. PubMed DOI PMC

Bowen SR, Yuh WTC, Hippe DS, Wu W, Partridge SC, Elias S, Jia G, Huang Z, Sandison GA, Nelson D, Knopp MV, Lo SS, Kinahan PE, Mayr NA. Tumor radiomic heterogeneity: multiparametric functional imaging to characterize variability and predict response following cervical cancer radiation therapy. J Magn Reson Imaging. 2018;47(5):1388–1396. doi: 10.1002/jmri.25874. PubMed DOI PMC

Mayr NA, Wang JZ, Zhang D, Grecula JC, Lo SS, Jaroura D, Montebello J, Zhang H, Li K, Lu L, Huang Z, Fowler JM, Wu DH, Knopp MV, Yuh WTC. Longitudinal changes in tumor perfusion pattern during the radiation therapy course and its clinical impact in cervical cancer. Int J Radiat Oncol Biol Phys. 2010;77(2):502–508. doi: 10.1016/j.ijrobp.2009.04.084. PubMed DOI

Dickie BR, Rose CJ, Kershaw LE, Withey SB, Carrington BM, Davidson SE, Hutchison G, West CML. The prognostic value of dynamic contrast-enhanced MRI contrast agent transfer constant K(trans) in cervical cancer is explained by plasma flow rather than vessel permeability. Br J Cancer. 2017;116(11):1436–1443. doi: 10.1038/bjc.2017.121. PubMed DOI PMC

Chong GO, Jeong SY, Park SH, Lee YH, Lee SW, Hong DG, Kim JC, Lee YS, Cho YL. Comparison of the prognostic value of F-18 pet metabolic parameters of primary tumors and regional lymph nodes in patients with locally advanced cervical cancer who are treated with concurrent chemoradiotherapy. PLoS One. 2015;10(9):e0137743. doi: 10.1371/journal.pone.0137743. PubMed DOI PMC

Crivellaro C, Signorelli M, Guerra L, De Ponti E, Buda A, Dolci C, et al. 18F-FDG PET/CT can predict nodal metastases but not recurrence in early stage uterine cervical cancer. Gynecol Oncol. 2012;127(1):131–135. doi: 10.1016/j.ygyno.2012.06.041. PubMed DOI

Hong JH, Min KJ, Lee JK, So KA, Jung US, Kim S, Eo JS. Prognostic value of the sum of metabolic tumor volume of primary tumor and lymph nodes using 18F-FDG PET/CT in patients with cervical cancer. Medicine (Baltimore) 2016;95(9):e2992. doi: 10.1097/MD.0000000000002992. PubMed DOI PMC

Grant P, Sakellis C, Jacene HA. Gynecologic oncologic imaging with PET/CT. Semin Nucl Med. 2014;44(6):461–478. doi: 10.1053/j.semnuclmed.2014.06.005. PubMed DOI

Basu S, Li G, Alavi A. PET and PET-CT imaging of gynecological malignancies: present role and future promise. Expert Rev Anticancer Ther. 2009;9(1):75–96. doi: 10.1586/14737140.9.1.75. PubMed DOI

Gee MS, Atri M, Bandos AI, Mannel RS, Gold MA, Lee SI. Identification of distant metastatic disease in uterine cervical and endometrial cancers with FDG PET/CT: analysis from the ACRIN 6671/GOG 0233 multicenter trial. Radiology. 2018;287(4):176–184. doi: 10.1148/radiol.2017170963. PubMed DOI PMC

Lin Y, Chen Z, Kuang F, Li H, Zhong Q, Ma M. Evaluation of international federation of gynecology and obstetrics stage IB cervical cancer: comparison of diffusion-weighted and dynamic contrast-enhanced magnetic resonance imaging at 3.0 T. J Comput Assist Tomogr. 2013;37(6):989–994. doi: 10.1097/RCT.0b013e3182990a65. PubMed DOI

Tummers P, Gerestein K, Mens JW, Verstraelen H, van Doorn H. Interobserver variability of the International Federation of Gynecology and Obstetrics staging in cervical cancer. Int J Gynecol Cancer. 2013;23(5):890–894. doi: 10.1097/IGC.0b013e318292da65. PubMed DOI

Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. ClinPharmacolTher. 2001;69(3):89–95. 10.1067/mcp.2001.113989. PubMed

Kim HS, Kim CK, Park BK, Huh SJ, Kim B. Evaluation of therapeutic response to concurrent chemoradiotherapy in patients with cervical cancer using diffusion-weighted MR imaging. J Magn Reson Imaging. 2013;37(1):187–193. doi: 10.1002/jmri.23804. PubMed DOI

Makino H, Kato H, Furui T, Morishige K, Kanematsu M. Predictive value of diffusion-weighted magnetic resonance imaging during chemoradiotherapy for uterine cervical cancer. J Obstet Gynaecol Res. 2014;40(4):1098–1104. doi: 10.1111/jog.12276. PubMed DOI

Onal C, Erbay G, Guler OC. Treatment response evaluation using the mean apparent diffusion coefficient in cervical cancer patients treated with definitive chemoradiotherapy. J Magn Reson Imaging. 2016;44(4):1010–1019. doi: 10.1002/jmri.25215. PubMed DOI

Leach MO, Morgan B, Tofts PS, Buckley DL, Huang W, Horsfield MA, et al. Imaging vascular function for early stage clinical trials using dynamic contrast-enhanced magnetic resonance imaging. Eur Radiol. 2012;22(7):1451–1464. doi: 10.1007/s00330-012-2446-x. PubMed DOI

Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 2007;26(2):225–239. doi: 10.1007/s10555-007-9055-1. PubMed DOI

Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307. doi: 10.1038/nature1014. PubMed DOI PMC

Bollineni VR, Ytre-Hauge S, Gulati A, Halle MK, Woie K, Salvesen Ø, et al. The prognostic value of preoperative FDG-PET/CT metabolic parameters in cervical cancer patients. Eur J Hybrid Imaging. 2018;2:1–14. doi: 10.1186/s41824-018-0042-2. PubMed DOI

Harry VN, Semple SI, Parkin DE, Gilbert FJ. Use of new imaging techniques to predict tumour response to therapy. Lancet Oncol. 2010;11(1):92–102. doi: 10.1016/S1470-2045(09)70190-1. PubMed DOI

Lin G, Lai CH, Tsai SY, Lin YC, Huang YT, Wu RC, Yang LY, Lu HY, Chao A, Wang CC, Ng KK, Ng SH, Chou HH, Yen TC, Hung JH. (1) H MR spectroscopy in cervical carcinoma using external phase array body coil at 3.0 Tesla: prediction of poor prognostic human papillomavirus genotypes. J Magn Reson Imaging. 2017;45(3):899–907. doi: 10.1002/jmri.25386. PubMed DOI

Ganeshan B, Miles KA. Quantifying tumour heterogeneity with CT. Cancer Imaging. 2013;13:140–149. doi: 10.1102/1470-7330.2013.0015. PubMed DOI PMC

Reuze S, Orlhac F, Chargari C, Nioche C, Limkin E, Riet F, et al. Prediction of cervical cancer recurrence using textural features extracted from 18F-FDG PET images acquired with different scanners. Oncotarget. 2017;8(26):43169–43179. doi: 10.18632/oncotarget.17856. PubMed DOI PMC

Lyng H, Malinen E. Hypoxia in cervical cancer: from biology to imaging. Clin Transl Imaging. 2017;5(4):373–388. doi: 10.1007/s40336-017-0238-7. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...