The evolution of the 9aaTAD domain in Sp2 proteins: inactivation with valines and intron reservoirs
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
15-32935A
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
31375868
PubMed Central
PMC11105055
DOI
10.1007/s00018-019-03251-w
PII: 10.1007/s00018-019-03251-w
Knihovny.cz E-zdroje
- Klíčová slova
- CBP, E2A, Gal4, Gcn4, KIX, KLF, MED15, MLL, Met4, TAF9, WT1, p53,
- MeSH
- aktivace transkripce MeSH
- duplikace genu MeSH
- fylogeneze MeSH
- introny genetika MeSH
- lidé MeSH
- molekulární evoluce * MeSH
- regulace genové exprese * MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie MeSH
- transkripční faktor Sp2 antagonisté a inhibitory genetika metabolismus MeSH
- valin genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- transkripční faktor Sp2 MeSH
- valin MeSH
The universal nine-amino-acid transactivation domains (9aaTADs) have been identified in numerous transcription activators. Here, we identified the conserved 9aaTAD motif in all nine members of the specificity protein (SP) family. Previously, the Sp1 transcription factor has been defined as a glutamine-rich activator. We showed by amino acid substitutions that the glutamine residues are completely dispensable for 9aaTAD function and are not conserved in the SP family. We described the origin and evolutionary history of 9aaTADs. The 9aaTADs of the ancestral Sp2 gene became inactivated in early chordates. We next discovered that an accumulation of valines in 9aaTADs inactivated their transactivation function and enabled their strict conservation during evolution. Subsequently, in chordates, Sp2 has duplicated and created new paralogs, Sp1, Sp3, and Sp4 (the SP1-4 clade). During chordate evolution, the dormancy of the Sp2 activation domain lasted over 100 million years. The dormant but still intact ancestral Sp2 activation domains allowed diversification of the SP1-4 clade into activators and repressors. By valine substitution in the 9aaTADs, Sp1 and Sp3 regained their original activator function found in ancestral lower metazoan sea sponges. Therefore, the vertebrate SP1-4 clade could include both repressors and activators. Furthermore, we identified secondary 9aaTADs in Sp2 introns present from fish to primates, including humans. In the gibbon genome, introns containing 9aaTADs were used as exons, which turned the Sp2 gene into an activator. Similarly, we identified introns containing 9aaTADs used conditionally as exons in the (SP family-unrelated) transcription factor SREBP1, suggesting that the intron-9aaTAD reservoir is a general phenomenon.
Zobrazit více v PubMed
Teufel DP, Freund SM, Bycroft M, Fersht AR. Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53. Proc Natl Acad Sci USA. 2007;104:7009–7014. doi: 10.1073/pnas.0702010104. PubMed DOI PMC
Gamper AM, Roeder RG. Multivalent binding of p53 to the STAGA complex mediates coactivator recruitment after UV damage. Mol Cell Biol. 2008;28:2517–2527. doi: 10.1128/MCB.01461-07. PubMed DOI PMC
Feng H, Jenkins LMM, Durell SR, et al. Structural basis for p300 Taz2-p53 TAD1 binding and modulation by phosphorylation. Structure. 2009;17:202–210. doi: 10.1016/j.str.2008.12.009. PubMed DOI PMC
Ferreon JC, Lee CW, Arai M, et al. Cooperative regulation of p53 by modulation of ternary complex formation with CBP/p300 and HDM2. Proc Natl Acad Sci USA. 2009;106:6591–6596. doi: 10.1073/pnas.0811023106. PubMed DOI PMC
Jenkins LMM, Yamaguchi H, Hayashi R, et al. Two distinct motifs within the p53 transactivation domain bind to the Taz2 domain of p300 and are differentially affected by phosphorylation. Biochemistry. 2009;48:1244–1255. doi: 10.1021/bi801716h. PubMed DOI PMC
Thakur JK, Arthanari H, Yang F, et al. Mediator subunit Gal11p/MED15 is required for fatty acid-dependent gene activation by yeast transcription factor Oaf1p. J Biol Chem. 2009;284:4422–4428. doi: 10.1074/jbc.M808263200. PubMed DOI PMC
Choi Y, Asada S, Uesugi M. Divergent hTAFII31-binding motifs hidden in activation domains. J Biol Chem. 2000;275:15912–15916. doi: 10.1074/jbc.275.21.15912. PubMed DOI
Uesugi M, Verdine GL. The alpha-helical FXXPhiPhi motif in p53: tAF interaction and discrimination by MDM2. Proc Natl Acad Sci USA. 1999;96:14801–14806. doi: 10.1073/pnas.96.26.14801. PubMed DOI PMC
Piskacek M. 9aaTADs mimic DNA to interact with a pseudo-DNA binding domain KIX of Med15 (molecular chameleons) Nat Proc. 2009 doi: 10.1038/npre.2009.3939.1. DOI
Piskacek M. Common transactivation Motif 9aaTAD recruits multiple general co-activators TAF9, MED15, CBP and p300. Nat Proc. 2009 doi: 10.1038/npre.2009.3488.2. DOI
Di Lello P, Jenkins LMM, Jones TN, et al. Structure of the Tfb1/p53 complex: insights into the interaction between the p62/Tfb1 subunit of TFIIH and the activation domain of p53. Mol Cell. 2006;22:731–740. doi: 10.1016/j.molcel.2006.05.007. PubMed DOI
Piskacek S, Gregor M, Nemethova M, et al. Nine-amino-acid transactivation domain: establishment and prediction utilities. Genomics. 2007;89:756–768. doi: 10.1016/j.ygeno.2007.02.003. PubMed DOI
Piskacek M, Vasku A, Hajek R, Knight A. Shared structural features of the 9aaTAD family in complex with CBP. Mol BioSyst. 2015;11:844–851. doi: 10.1039/c4mb00672k. PubMed DOI
Piskacek M, Havelka M, Rezacova M, Knight A. The 9aaTAD transactivation domains: from Gal4 to p53. PLoS One. 2016;11:e0162842. doi: 10.1371/journal.pone.0162842. PubMed DOI PMC
Piskacek M. 9aaTAD prediction result (2006) Nat Proc. 2009;1:1. doi: 10.1038/npre.2009.3984.1. DOI
Sandholzer J, Hoeth M, Piskacek M, et al. A novel 9-amino-acid transactivation domain in the C-terminal part of Sox18. Biochem Biophys Res Commun. 2007;360:370–374. doi: 10.1016/j.bbrc.2007.06.095. PubMed DOI
Piskacek M, Havelka M, Rezacova M, Knight A. The 9aaTAD is exclusive activation domain in Gal4. PLoS One. 2017;12:e0169261. doi: 10.1371/journal.pone.0169261. PubMed DOI PMC
Kakidani H, Ptashne M. GAL4 activates gene expression in mammalian cells. Cell. 1988;52:161–167. doi: 10.1016/0092-8674(88)90504-1. PubMed DOI
Fields S, Jang SK. Presence of a potent transcription activating sequence in the p53 protein. Science. 1990;249:1046–1049. doi: 10.1126/science.2144363. PubMed DOI
Piskacek M, Havelka M, Jendruchova K, Knight A. Nuclear hormone receptors: ancient 9aaTAD and evolutionally gained NCoA activation pathways. J Steroid Biochem Mol Biol. 2018 doi: 10.1016/j.jsbmb.2018.11.008. PubMed DOI
Triezenberg SJ. Structure and function of transcriptional activation domains. Curr Opin Genet Dev. 1995;5:190–196. doi: 10.1016/0959-437X(95)80007-7. PubMed DOI
Ma J, Ptashne M. A new class of yeast transcriptional activators. Cell. 1987;51:113–119. doi: 10.1016/0092-8674(87)90015-8. PubMed DOI
Courey AJ, Tjian R. Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell. 1988;55:887–898. doi: 10.1016/0092-8674(88)90144-4. PubMed DOI
Courey AJ, Holtzman DA, Jackson SP, Tjian R. Synergistic activation by the glutamine-rich domains of human transcription factor Sp1. Cell. 1989;59:827–836. doi: 10.1016/0092-8674(89)90606-5. PubMed DOI
Tanese N, Pugh BF, Tjian R. Coactivators for a proline-rich activator purified from the multisubunit human TFIID complex. Genes Dev. 1991;5:2212–2224. doi: 10.1101/gad.5.12a.2212. PubMed DOI
Mermod N, O’Neill EA, Kelly TJ, Tjian R. The proline-rich transcriptional activator of CTF/NF-I is distinct from the replication and DNA binding domain. Cell. 1989;58:741–753. doi: 10.1016/0092-8674(89)90108-6. PubMed DOI
Stargell LA, Struhl K. The TBP-TFIIA interaction in the response to acidic activators in vivo. Science. 1995;269:75–78. doi: 10.1126/science.7604282. PubMed DOI
Chou S, Struhl K. Transcriptional activation by TFIIB mutants that are severely impaired in interaction with promoter DNA and acidic activation domains. Mol Cell Biol. 1997;17:6794–6802. doi: 10.1128/MCB.17.12.6794. PubMed DOI PMC
Dorris DR, Struhl K. Artificial recruitment of TFIID, but not RNA polymerase II holoenzyme, activates transcription in mammalian cells. Mol Cell Biol. 2000;20:4350–4358. doi: 10.1128/MCB.20.12.4350-4358.2000. PubMed DOI PMC
Thoden JB, Ryan LA, Reece RJ, Holden HM. The interaction between an acidic transcriptional activator and its inhibitor. The molecular basis of Gal4p recognition by Gal80p. J Biol Chem. 2008;283:30266–30272. doi: 10.1074/jbc.M805200200. PubMed DOI PMC
Drysdale CM, Dueñas E, Jackson BM, et al. The transcriptional activator GCN4 contains multiple activation domains that are critically dependent on hydrophobic amino acids. Mol Cell Biol. 1995;15:1220–1233. doi: 10.1128/MCB.15.3.1220. PubMed DOI PMC
Jackson BM, Drysdale CM, Natarajan K, Hinnebusch AG. Identification of seven hydrophobic clusters in GCN4 making redundant contributions to transcriptional activation. Mol Cell Biol. 1996;16:5557–5571. doi: 10.1128/MCB.16.10.5557. PubMed DOI PMC
Natarajan K, Meyer MR, Jackson BM, et al. Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol. 2001;21:4347–4368. doi: 10.1128/MCB.21.13.4347-4368.2001. PubMed DOI PMC
Jedidi I, Zhang F, Qiu H, et al. Activator Gcn4 employs multiple segments of Med15/Gal11, including the KIX domain, to recruit mediator to target genes in vivo. J Biol Chem. 2010;285:2438–2455. doi: 10.1074/jbc.M109.071589. PubMed DOI PMC
Krois AS, Ferreon JC, Martinez-Yamout MA, et al. Recognition of the disordered p53 transactivation domain by the transcriptional adapter zinc finger domains of CREB-binding protein. Proc Natl Acad Sci USA. 2016;113:E1853–1862. doi: 10.1073/pnas.1602487113. PubMed DOI PMC
Lee CW, Arai M, Martinez-Yamout MA, et al. Mapping the interactions of the p53 transactivation domain with the KIX domain of CBP. Biochemistry. 2009;48:2115–2124. doi: 10.1021/bi802055v. PubMed DOI PMC
Denis CM, Chitayat S, Plevin MJ, et al. Structural basis of CBP/p300 recruitment in leukemia induction by E2A-PBX1. Blood. 2012 doi: 10.1182/blood-2012-02-411397. PubMed DOI
Wang F, Marshall CB, Li G-Y, et al. Synergistic interplay between promoter recognition and CBP/p300 coactivator recruitment by FOXO3a. ACS Chem Biol. 2009;4:1017–1027. doi: 10.1021/cb900190u. PubMed DOI
Radhakrishnan I, Pérez-Alvarado GC, Parker D, et al. Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell. 1997;91:741–752. doi: 10.1016/S0092-8674(00)80463-8. PubMed DOI
Lee CW, Martinez-Yamout MA, Dyson HJ, Wright PE. Structure of the p53 transactivation domain in complex with the nuclear receptor coactivator binding domain of CREB binding protein. Biochemistry. 2010;49:9964–9971. doi: 10.1021/bi1012996. PubMed DOI PMC
Wojciak JM, Martinez-Yamout MA, Dyson HJ, Wright PE. Structural basis for recruitment of CBP/p300 coactivators by STAT1 and STAT2 transactivation domains. EMBO J. 2009;28:948–958. doi: 10.1038/emboj.2009.30. PubMed DOI PMC
Gill G, Pascal E, Tseng ZH, Tjian R. A glutamine-rich hydrophobic patch in transcription factor Sp1 contacts the dTAFII110 component of the Drosophila TFIID complex and mediates transcriptional activation. Proc Natl Acad Sci USA. 1994;91:192–196. doi: 10.1073/pnas.91.1.192. PubMed DOI PMC
Titz B, Thomas S, Rajagopala SV, et al. Transcriptional activators in yeast. Nucleic Acids Res. 2006;34:955–967. doi: 10.1093/nar/gkj493. PubMed DOI PMC
Escher D, Bodmer-Glavas M, Barberis A, Schaffner W. Conservation of glutamine-rich transactivation function between yeast and humans. Mol Cell Biol. 2000;20:2774–2782. doi: 10.1128/MCB.20.8.2774-2782.2000. PubMed DOI PMC
Hahn S. Structure(?) and function of acidic transcription activators. Cell. 1993;72:481–483. doi: 10.1016/0092-8674(93)90064-W. PubMed DOI
Brzovic PS, Heikaus CC, Kisselev L, et al. The acidic transcription activator Gcn4 binds the mediator subunit Gal11/Med15 using a simple protein interface forming a fuzzy complex. Mol Cell. 2011;44:942–953. doi: 10.1016/j.molcel.2011.11.008. PubMed DOI PMC
Lu Z, Ansari AZ, Lu X, et al. A target essential for the activity of a nonacidic yeast transcriptional activator. Proc Natl Acad Sci USA. 2002;99:8591–8596. doi: 10.1073/pnas.092263499. PubMed DOI PMC
Ma J, Ptashne M. Deletion analysis of GAL4 defines two transcriptional activating segments. Cell. 1987;48:847–853. doi: 10.1016/0092-8674(87)90081-X. PubMed DOI
Ferreira ME, Hermann S, Prochasson P, et al. Mechanism of transcription factor recruitment by acidic activators. J Biol Chem. 2005;280:21779–21784. doi: 10.1074/jbc.M502627200. PubMed DOI
Staller MV, Holehouse AS, Swain-Lenz D, et al. A high-throughput mutational scan of an intrinsically disordered acidic transcriptional activation domain. Cell Syst. 2018 doi: 10.1016/j.cels.2018.01.015. PubMed DOI PMC
Zhang H-M, Liu T, Liu C-J, et al. AnimalTFDB 2.0: a resource for expression, prediction and functional study of animal transcription factors. Nucleic Acids Res. 2015;43:D76–81. doi: 10.1093/nar/gku887. PubMed DOI PMC
Kolell KJ, Crawford DL. Evolution of Sp transcription factors. Mol Biol Evol. 2002;19:216–222. doi: 10.1093/oxfordjournals.molbev.a004074. PubMed DOI
Kaczynski J, Cook T, Urrutia R. Sp1- and Krüppel-like transcription factors. Genome Biol. 2003;4:206. doi: 10.1186/gb-2003-4-2-206. PubMed DOI PMC
Suske G, Bruford E, Philipsen S. Mammalian SP/KLF transcription factors: bring in the family. Genomics. 2005;85:551–556. doi: 10.1016/j.ygeno.2005.01.005. PubMed DOI
Vizcaíno C, Mansilla S, Portugal J. Sp1 transcription factor: a long-standing target in cancer chemotherapy. Pharmacol Ther. 2015;152:111–124. doi: 10.1016/j.pharmthera.2015.05.008. PubMed DOI
Mir R, Sharma A, Pradhan SJ, Galande S. Regulation of transcription factor SP1 by β-catenin destruction complex modulates Wnt response. bioRxiv 308841. 2018 doi: 10.1101/308841. PubMed DOI PMC
Rane MJ, Zhao Y, Cai L. Krϋppel-like factors (KLFs) in renal physiology and disease. EBioMedicine. 2019 doi: 10.1016/j.ebiom.2019.01.021. PubMed DOI PMC
Miller JH. Experiments in molecular genetics. New York: Cold Spring Harbor Laboratory; 1972.
Baumgartner U, Hamilton B, Piskacek M, et al. Functional analysis of the Zn(2)Cys(6) transcription factors Oaf1p and Pip2p. Different roles in fatty acid induction of beta-oxidation in Saccharomyces cerevisiae. J Biol Chem. 1999;274:22208–22216. doi: 10.1074/jbc.274.32.22208. PubMed DOI
Leuther KK, Salmeron JM, Johnston SA. Genetic evidence that an activation domain of GAL4 does not require acidity and may form a beta sheet. Cell. 1993;72:575–585. doi: 10.1016/0092-8674(93)90076-3. PubMed DOI
Baur F, Nau K, Sadic D, et al. Specificity protein 2 (Sp2) is essential for mouse development and autonomous proliferation of mouse embryonic fibroblasts. PLoS One. 2010;5:e9587. doi: 10.1371/journal.pone.0009587. PubMed DOI PMC
Terrados G, Finkernagel F, Stielow B, et al. Genome-wide localization and expression profiling establish Sp2 as a sequence-specific transcription factor regulating vitally important genes. Nucleic Acids Res. 2012;40:7844–7857. doi: 10.1093/nar/gks544. PubMed DOI PMC
Völkel S, Stielow B, Finkernagel F, et al. Zinc finger independent genome-wide binding of Sp2 potentiates recruitment of histone-fold protein Nf-y distinguishing it from Sp1 and Sp3. PLoS Genet. 2015;11:e1005102. doi: 10.1371/journal.pgen.1005102. PubMed DOI PMC
Ratajewski M, Walczak-Drzewiecka A, Gorzkiewicz M, et al. Expression of human gene coding RORγT receptor depends on the Sp2 transcription factor. J Leukoc Biol. 2016;100:1213–1223. doi: 10.1189/jlb.6A0515-212RR. PubMed DOI
Zschemisch N-H, Brüsch I, Hambusch A-S, Bleich A. Transcription factor SP2 enhanced the expression of Cd14 in colitis-susceptible C3H/HeJBir. PLoS One. 2016;11:e0155821. doi: 10.1371/journal.pone.0155821. PubMed DOI PMC
Moorefield KS, Fry SJ, Horowitz JM. Sp2 DNA binding activity and trans-activation are negatively regulated in mammalian cells. J Biol Chem. 2004;279:13911–13924. doi: 10.1074/jbc.M313589200. PubMed DOI
Yin H, Nichols TD, Horowitz JM. Transcription of mouse Sp2 yields alternatively spliced and sub-genomic mRNAs in a tissue- and cell-type-specific fashion. Biochim Biophys Acta. 2010;1799:520–531. doi: 10.1016/j.bbagrm.2010.03.002. PubMed DOI PMC
Phan D, Cheng C-J, Galfione M, et al. Identification of Sp2 as a transcriptional repressor of carcinoembryonic antigen-related cell adhesion molecule 1 in tumorigenesis. Cancer Res. 2004;64:3072–3078. doi: 10.1158/0008-5472.CAN-03-3730. PubMed DOI
Yesudhas D, Anwar MA, Panneerselvam S, et al. Evaluation of Sox2 binding affinities for distinct DNA patterns using steered molecular dynamics simulation. FEBS Open Bio. 2017;7:1750–1767. doi: 10.1002/2211-5463.12316. PubMed DOI PMC
Kamachi Y, Kondoh H. Sox proteins: regulators of cell fate specification and differentiation. Development. 2013;140:4129–4144. doi: 10.1242/dev.091793. PubMed DOI
Lodato MA, Ng CW, Wamstad JA, et al. SOX2 co-occupies distal enhancer elements with distinct POU factors in ESCs and NPCs to specify cell state. PLoS Genet. 2013;9:e1003288. doi: 10.1371/journal.pgen.1003288. PubMed DOI PMC
Ward SV, Samuel CE. The pkr kinase promoter binds both Sp1 and Sp3, but only Sp3 functions as part of the interferon-inducible complex with ISGF-3 proteins. Virology. 2003;313:553–566. doi: 10.1016/S0042-6822(03)00347-7. PubMed DOI
Jaiswal AS, Balusu R, Narayan S. 7,12-Dimethylbenzanthracene-dependent transcriptional regulation of adenomatous polyposis coli (APC) gene expression in normal breast epithelial cells is mediated by GC-box binding protein Sp3. Carcinogenesis. 2006;27:252–261. doi: 10.1093/carcin/bgi225. PubMed DOI
Li L, Davie JR. The role of Sp1 and Sp3 in normal and cancer cell biology. Ann Anat Anatomischer Anz. 2010;192:275–283. doi: 10.1016/j.aanat.2010.07.010. PubMed DOI
Erwin DH, Laflamme M, Tweedt SM, et al. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science. 2011;334:1091–1097. doi: 10.1126/science.1206375. PubMed DOI
Presnell JS, Schnitzler CE, Browne WE. KLF/SP transcription factor family evolution: expansion, diversification, and innovation in eukaryotes. Genome Biol Evol. 2015;7:2289–2309. doi: 10.1093/gbe/evv141. PubMed DOI PMC
Hackett SJ, Kimball RT, Reddy S, et al. A phylogenomic study of birds reveals their evolutionary history. Science. 2008;320:1763–1768. doi: 10.1126/science.1157704. PubMed DOI
Christoffels A, Koh EGL, Chia J-M, et al. Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol Biol Evol. 2004;21:1146–1151. doi: 10.1093/molbev/msh114. PubMed DOI
Conkright MD, Wani MA, Lingrel JB. Lung Krüppel-like factor contains an autoinhibitory domain that regulates its transcriptional activation by binding WWP1, an E3 ubiquitin ligase. J Biol Chem. 2001;276:29299–29306. doi: 10.1074/jbc.M103670200. PubMed DOI
Geiman DE, Ton-That H, Johnson JM, Yang VW. Transactivation and growth suppression by the gut-enriched Krüppel-like factor (Krüppel-like factor 4) are dependent on acidic amino acid residues and protein-protein interaction. Nucleic Acids Res. 2000;28:1106–1113. doi: 10.1093/nar/28.5.1106. PubMed DOI PMC
Mas C, Lussier-Price M, Soni S, et al. Structural and functional characterization of an atypical activation domain in erythroid Kruppel-like factor (EKLF) Proc Natl Acad Sci USA. 2011;108:10484–10489. doi: 10.1073/pnas.1017029108. PubMed DOI PMC
Knights AJ, Yik JJ, Mat Jusoh H, et al. Krüppel-like factor 3 (KLF3/BKLF) is required for widespread repression of the inflammatory modulator Galectin-3 (Lgals3) J Biol Chem. 2016;291:16048–16058. doi: 10.1074/jbc.M116.715748. PubMed DOI PMC
Klein RH, Hu W, Kashgari G, et al. Characterization of enhancers and the role of the transcription factor KLF7 in regulating corneal epithelial differentiation. J Biol Chem. 2017;292:18937–18950. doi: 10.1074/jbc.M117.793117. PubMed DOI PMC
Das A, Fernandez-Zapico ME, Cao S, et al. Disruption of an SP2/KLF6 repression complex by SHP is required for farnesoid X receptor-induced endothelial cell migration. J Biol Chem. 2006;281:39105–39113. doi: 10.1074/jbc.M607720200. PubMed DOI
Zhang H, Zhu X, Chen J, et al. Krüppel-like factor 12 is a novel negative regulator of forkhead box O1 expression: a potential role in impaired decidualization. Reprod Biol Endocrinol. 2015;13:80. doi: 10.1186/s12958-015-0079-z. PubMed DOI PMC
Pace CN, Scholtz JM. A helix propensity scale based on experimental studies of peptides and proteins. Biophys J. 1998;75:422–427. doi: 10.1016/S0006-3495(98)77529-0. PubMed DOI PMC
Pacheco D, Warfield L, Brajcich M, et al. Transcription activation domains of the yeast factors Met4 and Ino2: tandem activation domains with properties similar to the yeast Gcn4 activator. Mol Cell Biol. 2018 doi: 10.1128/MCB.00038-18. PubMed DOI PMC
Warfield L, Tuttle LM, Pacheco D, et al. A sequence-specific transcription activator motif and powerful synthetic variants that bind Mediator using a fuzzy protein interface. Proc Natl Acad Sci USA. 2014;111:E3506–3513. doi: 10.1073/pnas.1412088111. PubMed DOI PMC
Carbone L, Harris RA, Gnerre S, et al. Gibbon genome and the fast karyotype evolution of small apes. Nature. 2014;513:195–201. doi: 10.1038/nature13679. PubMed DOI PMC
Chong S, Dugast-Darzacq C, Liu Z, et al. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science. 2018 doi: 10.1126/science.aar2555. PubMed DOI PMC
Myc 9aaTAD activation domain binds to mediator of transcription with superior high affinity
The 9aaTAD Activation Domains in the Yamanaka Transcription Factors Oct4, Sox2, Myc, and Klf4