Stereotactic Radiosurgery for Cavernous Sinus Versus Noncavernous Sinus Dural Arteriovenous Fistulas: Outcomes and Outcome Predictors
Language English Country United States Media print
Document type Journal Article
Grant support
U54 GM104942
NIGMS NIH HHS - United States
PubMed
31384943
PubMed Central
PMC7317986
DOI
10.1093/neuros/nyz260
PII: 5543999
Knihovny.cz E-resources
- Keywords
- Cavernous sinus, Dural arteriovenous fistulas, Gamma Knife, Intracranial, Predictor, Radiosurgery,
- MeSH
- Central Nervous System Vascular Malformations pathology radiotherapy MeSH
- Adult MeSH
- Cohort Studies MeSH
- Middle Aged MeSH
- Humans MeSH
- Prognosis MeSH
- Radiosurgery methods MeSH
- Retrospective Studies MeSH
- Aged MeSH
- Cavernous Sinus pathology MeSH
- Treatment Outcome MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Dural arteriovenous fistulas (DAVFs) can be categorized based on location. OBJECTIVE: To compare stereotactic radiosurgery (SRS) outcomes between cavernous sinus (CS) and non-CS DAVFs and to identify respective outcome predictors. METHODS: This is a retrospective study of DAVFs treated with SRS between 1988 and 2016 at 10 institutions. Patients' variables, DAVF characters, and SRS parameters were included for analyses. Favorable clinical outcome was defined as angiography-confirmed obliteration without radiological radiation-induced changes (RIC) or post-SRS hemorrhage. Other outcomes were DAVFs obliteration and adverse events (including RIC, symptomatic RIC, and post-SRS hemorrhage). RESULTS: The overall study cohort comprised 131 patients, including 20 patients with CS DAVFs (15%) and 111 patients with non-CS DAVFs (85%). Rates of favorable clinical outcome were comparable between the 2 groups (45% vs 37%, P = .824). Obliteration rate after SRS was higher in the CS DAVFs group, even adjusted for baseline difference (OR = 4.189, P = .044). Predictors of favorable clinical outcome included higher maximum dose (P = .014) for CS DAVFs. Symptomatic improvement was associated with obliteration in non-CS DAVFs (P = .005), but symptoms improved regardless of whether obliteration was confirmed in CS DAVFs. Non-CS DAVFs patients with adverse events after SRS were more likely to be male (P = .020), multiple arterial feeding fistulas (P = .018), and lower maximum dose (P = .041). CONCLUSION: After SRS, CS DAVFs are more likely to obliterate than non-CS ones. Because these 2 groups have different total predictors for clinical and radiologic outcomes after SRS, they should be considered as different entities.
Department of Neurological Surgery Na Homolce Hospital Prague Czech Republic
Department of Neurological Surgery University of Manitoba Winnipeg Canada
Department of Neurological Surgery University of Miami Miami Florida
Department of Neurological Surgery University of Pennsylvania Philadelphia Pennsylvania
Department of Neurological Surgery University of Pittsburgh Pittsburgh Pennsylvania
Department of Neurological Surgery University of Puerto Rico San Juan Puerto Rico
Department of Neurological Surgery University of Virginia Charlottesville Virginia
Department of Neurological Surgery West Virginia University Morgantown West Virginia
Department of Radiation Oncology Beaumont Health System Royal Oak Michigan
Department of Radiation Oncology West Virginia University Morgantown West Virginia
Division of Neurosurgery Department of Surgery Chi Mei Medical Center Tainan Taiwan
See more in PubMed
Chaudhary MY, Sachdev VP, Cho SH, Weitzner I Jr, Puljic S, Huang YP. Dural arteriovenous malformation of the major venous sinuses: an acquired lesion. AJNR Am J Neuroradiol. 1982;3(1):13-19. PubMed PMC
Houser OW, Campbell JK, Campbell RJ, Sundt TM Jr. Arteriovenous malformation affecting the transverse dural venous sinus–an acquired lesion. Mayo Clin Proc. 1979;54(10):651-661. PubMed
Nishijima M, Takaku A, Endo S et al. .. Etiological evaluation of dural arteriovenous malformations of the lateral and sigmoid sinuses based on histopathological examinations. J Neurosurg. 1992;76(4):600-606. PubMed
Cognard C, Gobin YP, Pierot L et al. .. Cerebral dural arteriovenous fistulas: clinical and angiographic correlation with a revised classification of venous drainage. Radiology. 1995;194(3):671-680. PubMed
Gupta A, Periakaruppan A. Intracranial dural arteriovenous fistulas: a review. Indian J Radiol Imaging. 2009;19(1):43-48. PubMed PMC
Soderman M, Edner G, Ericson K et al. .. Gamma knife surgery for dural arteriovenous shunts: 25 years of experience. J Neurosurg. 2006;104(6):867-875. PubMed
Newton TH, Cronqvist S. Involvement of dural arteries in intracranial arteriovenous malformations. Radiology. 1969;93(5):1071-1078. PubMed
Pan DH, Wu HM, Kuo YH, Chung WY, Lee CC, Guo WY. Intracranial dural arteriovenous fistulas: natural history and rationale for treatment with stereotactic radiosurgery. Prog Neurol Surg. 2013;27:176-194. PubMed
Chen CJ, Lee CC, Ding D et al. .. Stereotactic radiosurgery for intracranial dural arteriovenous fistulas: a systematic review. J Neurosurg. 2015;122(2):353-362. PubMed
Piippo A, Niemela M, van Popta J et al. .. Characteristics and long-term outcome of 251 patients with dural arteriovenous fistulas in a defined population. J Neurosurg. 2013;118(5):923-934. PubMed
Oh JT, Chung SY, Lanzino G et al. .. Intracranial dural arteriovenous fistulas: clinical characteristics and management based on location and hemodynamics. J Cerebrovasc Endovasc Neurosurg. 2012;14(3):192-202. PubMed PMC
Hanakita S, Koga T, Shin M, Shojima M, Igaki H, Saito N. Role of Gamma Knife surgery in the treatment of intracranial dural arteriovenous fistulas. J Neurosurg. 2012;117(Special_Suppl):158-163. PubMed
Yang H, Kano H, Kondziolka D et al. .. Stereotactic radiosurgery with or without embolization for intracranial dural arteriovenous fistulas. Prog Neurol Surg. 2013;27:195-204. PubMed
Borden JA, Wu JK, Shucart WA. A proposed classification for spinal and cranial dural arteriovenous fistulous malformations and implications for treatment. J Neurosurg. 1995;82(2):166-179. PubMed
Awad IA, Little JR, Akarawi WP, Ahl J. Intracranial dural arteriovenous malformations: factors predisposing to an aggressive neurological course. J Neurosurg. 1990;72(6):839-850. PubMed
van Dijk JM, terBrugge KG, Willinsky RA, Wallace MC. Clinical course of cranial dural arteriovenous fistulas with long-term persistent cortical venous reflux. Stroke. 2002;33(5):1233-1236. PubMed
Hamada Y, Goto K, Inoue T et al. .. Histopathological aspects of dural arteriovenous fistulas in the transverse-sigmoid sinus region in nine patients. Neurosurgery. 1997;40(3):452-456; discussion 456–458. PubMed
Cifarelli CP, Kaptain G, Yen CP, Schlesinger D, Sheehan JP. Gamma knife radiosurgery for dural arteriovenous fistulas. Neurosurgery. 2010;67(5):1230-1235; discussion 1235. PubMed
Lv X, Li Y, Jiang C, Wu Z. Endovascular treatment of brain arteriovenous fistulas. AJNR Am J Neuroradiol. 2009;30(4):851-856. PubMed PMC
Hu YC, Newman CB, Dashti SR, Albuquerque FC, McDougall CG. Cranial dural arteriovenous fistula: transarterial Onyx embolization experience and technical nuances. J Neurointerv Surg. 2011;3(1):5-13. PubMed
Macdonald JH, Millar JS, Barker CS. Endovascular treatment of cranial dural arteriovenous fistulae: a single-centre, 14-year experience and the impact of Onyx on local practise. Neuroradiology. 2010;52(5):387-395. PubMed
Abud TG, Nguyen A, Saint-Maurice JP et al. .. The use of Onyx in different types of intracranial dural arteriovenous fistula. AJNR Am J Neuroradiol. 2011;32(11):2185-2191. PubMed PMC
Natarajan SK, Ghodke B, Kim LJ, Hallam DK, Britz GW, Sekhar LN. Multimodality treatment of intracranial dural arteriovenous fistulas in the Onyx era: a single center experience. World Neurosurg. 2010;73(4):365-379. PubMed
van Rooij WJ, Sluzewski M. Curative embolization with Onyx of dural arteriovenous fistulas with cortical venous drainage. AJNR Am J Neuroradiol. 2010;31(8):1516-1520. PubMed PMC
Gonzalez LF, Chalouhi N, Jabbour P, Teufack S, Albuquerque FC, Spetzler RF. Rapid and progressive venous thrombosis after occlusion of high-flow arteriovenous fistula. World Neurosurg. 2013;80(6):e359-e365. PubMed
Bink A, Goller K, Luchtenberg M et al. .. Long-term outcome after coil embolization of cavernous sinus arteriovenous fistulas. AJNR Am J Neuroradiol. 2010;31(7):1216-1221. PubMed PMC
Pan DH, Lee CC, Wu HM, Chung WY, Yang HC, Lin CJ. Gamma Knife radiosurgery for the management of intracranial dural arteriovenous fistulas. Acta Neurochir Suppl. 2013;116:113-119. PubMed
Barcia-Salorio JL, Soler F, Barcia JA, Hernandez G. Stereotactic radiosurgery for the treatment of low-flow carotid-cavernous fistulae: results in a series of 25 cases. Stereotact Funct Neurosurg. 1994;63(1-4):266-270. PubMed
Barcia-Salorio JL, Herandez G, Broseta J, Gonzalez-Darder J, Ciudad J. Radiosurgical treatment of carotid-cavernous fistula. Appl Neurophysiol. 1982;45(4-5):520-522. PubMed
Yang HC, Kano H, Kondziolka D et al. .. Stereotactic radiosurgery with or without embolization for intracranial dural arteriovenous fistulas. Neurosurgery. 2010;67(5):1276-1285; discussion 1284-1275. PubMed
Tonetti DA, Gross BA, Jankowitz BT et al. .. Stereotactic radiosurgery for dural arteriovenous fistulas without cortical venous reflux. World Neurosurg. 2017;107:371-375. PubMed
Park SH, Park KS, Kang DH, Hwang JH, Hwang SK. Stereotactic radiosurgery for dural carotid cavernous sinus fistulas. World Neurosurg. 2017;106:836-843. PubMed
Wu HM, Pan DH, Chung WY et al. .. Gamma Knife surgery for the management of intracranial dural arteriovenous fistulas. J Neurosurg. 2006;105(Suppl):43-51. PubMed
Schneider BF, Eberhard DA, Steiner LE. Histopathology of arteriovenous malformations after gamma knife radiosurgery. J Neurosurg. 1997;87(3):352-357. PubMed
Hopewell JW, Millar WT, Paddick I, Lindquist C. Impact of decaying dose-rate in gamma knife radiosurgery. J Radiosurg. SBRT. 2013;2(3):251-253. PubMed PMC
Coderre JA, Morris GM, Micca PL et al. .. Late effects of radiation on the central nervous system: Role of vascular endothelial damage and glial stem cell survival. Radiat Res. 2006;166(3):495-503. PubMed
Cuccurullo V. L. Dade Lunsford and Jason P. Sheehan (eds): Intracranial stereotactic radiosurgery. Eur J Nucl Med Mol Imaging. 2010;37(3):652-652.
Kano H, Kondziolka D, Flickinger JC et al. .. Aneurysms increase the risk of rebleeding after stereotactic radiosurgery for hemorrhagic arteriovenous malformations. Stroke. 2012;43(10):2586-2591. PubMed
Starke RM, McCarthy DJ, Chen CJ et al. .. Evaluation of stereotactic radiosurgery for cerebral dural arteriovenous fistulas in a multicenter international consortium. J Neurosurg. 2019:1-8. PubMed PMC
Chen CJ, Ding D, Kano H et al. .. Stereotactic radiosurgery for pediatric versus adult brain arteriovenous malformations: a multicenter study. Stroke. 2018:49(8):1939-1945. PubMed
Patibandla MR, Ding D, Kano H et al. .. Effect of treatment period on outcomes after stereotactic radiosurgery for brain arteriovenous malformations: an international multicenter study. J Neurosurg. 2018: 123(1):136-144. PubMed
Lee CC, Reardon MA, Ball BZ et al. .. The predictive value of magnetic resonance imaging in evaluating intracranial arteriovenous malformation obliteration after stereotactic radiosurgery. J Neurosurg. 2015;123(1):136-144. PubMed