New Opportunities for Forest Remote Sensing Through Ultra-High-Density Drone Lidar
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
31395993
PubMed Central
PMC6647463
DOI
10.1007/s10712-019-09529-9
PII: 9529
Knihovny.cz E-zdroje
- Klíčová slova
- Drone, Global Ecosystem Dynamics Investigation (GEDI), Lidar, Remote sensing, UAV,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Current and planned space missions will produce aboveground biomass density data products at varying spatial resolution. Calibration and validation of these data products is critically dependent on the existence of field estimates of aboveground biomass and coincident remote sensing data from airborne or terrestrial lidar. There are few places that meet these requirements, and they are mostly in the northern hemisphere and temperate zone. Here we summarize the potential for low-altitude drones to produce new observations in support of mission science. We describe technical requirements for producing high-quality measurements from autonomous platforms and highlight differences among commercially available laser scanners and drone aircraft. We then describe a case study using a heavy-lift autonomous helicopter in a temperate mountain forest in the southern Czech Republic in support of calibration and validation activities for the NASA Global Ecosystem Dynamics Investigation. Low-altitude flight using drones enables the collection of ultra-high-density point clouds using wider laser scan angles than have been possible from traditional airborne platforms. These measurements can be precise and accurate and can achieve measurement densities of thousands of points · m-2. Analysis of surface elevation measurements on a heterogeneous target observed 51 days apart indicates that the realized range accuracy is 2.4 cm. The single-date precision is 2.1-4.5 cm. These estimates are net of all processing artifacts and geolocation errors under fully autonomous flight. The 3D model produced by these data can clearly resolve branch and stem structure that is comparable to terrestrial laser scans and can be acquired rapidly over large landscapes at a fraction of the cost of traditional airborne laser scanning.
Aeroscout GmbH Hengstrain 14 6280 Hochdorf Switzerland
The Silva Tarouca Research Institute Department of Forest Ecology Lidicka 25 27 602 00 Brno Czechia
Zobrazit více v PubMed
Åkerblom M, Raumonen P, Kaasalainen M, et al. Analysis of geometric primitives in quantitative structure models of tree stems. Remote Sens. 2015;7:4581–4603. doi: 10.3390/rs70404581. DOI
Anderson-Teixeira KJ, Davies SJ, Bennett AC, et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob Change Biol. 2015;21:528–549. doi: 10.1111/gcb.12712. PubMed DOI
Aouf N, Ollero A, Sasiadek JZ. Special issue on: airborne simultaneous localisation and map building (A-SLAM) J Intell Robot Syst. 2009;55:247–248. doi: 10.1007/s10846-009-9322-1. DOI
Asner GP, Heidebrecht KB. Spectral unmixing of vegetation, soil and dry carbon cover in arid regions: comparing multispectral and hyperspectral observations. Int J Remote Sens. 2002;23:3939–3958. doi: 10.1080/01431160110115960. DOI
Asner GP, Knapp DE, Kennedy-Bowdoin T, et al. Carnegie airborne observatory: in-flight fusion of hyperspectral imaging and waveform light detection and ranging for three-dimensional studies of ecosystems. J Appl Remote Sens. 2007;1:013536. doi: 10.1117/1.2794018. DOI
Brede B, Lau A, Bartholomeus HM, Kooistra L. Comparing RIEGL RiCOPTER UAV LiDAR Derived Canopy Height and DBH with Terrestrial LiDAR. Sensors. 2017;17:2371. doi: 10.3390/s17102371. PubMed DOI PMC
Calders K, Newnham G, Burt A, et al. Nondestructive estimates of above-ground biomass using terrestrial laser scanning. Methods Ecol Evol. 2015;6:198–208. doi: 10.1111/2041-210X.12301. DOI
Calders K, Disney MI, Armston J, et al. Evaluation of the range accuracy and the radiometric calibration of multiple terrestrial laser scanning instruments for data interoperability. IEEE Trans Geosci Remote Sens. 2017;55:2716–2724. doi: 10.1109/TGRS.2017.2652721. DOI
CEOS Working Group on Calibration and Validation (2017) Land product validation subgroup. https://lpvs.gsfc.nasa.gov/about.html. Accessed 23 Feb 2017
CEOS Strategy for Carbon Observations from Space (2014) The Committee on Earth Observation Satellites (CEOS) Response to the Group on Earth Observations (GEO) Carbon Strategy
Chave J, Rejou-Mechain M, Burquez A, et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Change Biol. 2014;20:3177–3190. doi: 10.1111/gcb.12629. PubMed DOI
Clark DA. Are tropical forests and important carbon sink? Reanalysis of the long-term plot data. Ecol Appl. 2002;12:3–7. doi: 10.1890/1051-0761(2002)012[0003:ATFAIC]2.0.CO;2. DOI
Clark DB, Kellner JR. Tropical forest biomass estimation and the fallacy of misplaced concreteness. J Veg Sci. 2012;23:1191–1196. doi: 10.1111/j.1654-1103.2012.01471.x. DOI
Disney MI, Vicari MB, Burt A, et al. Weighing trees with lasers: advances, challenges and opportunities. Interface Focus. 2018;8:20170048. doi: 10.1098/rsfs.2017.0048. PubMed DOI PMC
Dubayah R, Goetz SJ, Blair JB, et al (2014) The Global Ecosystem Dynamics Investigation. AGU Fall Meeting Abstracts 14
Duncanson L, Armston J, Disney M, et al (2019) The importance of consistent global forest aboveground biomass product validation. Surv Geophys (this issue) PubMed PMC
Gonzalez de Tanago J, Lau A, Bartholomeus H, et al. Estimation of above-ground biomass of large tropical trees with terrestrial LiDAR. Methods Ecol Evol. 2018;9:223–234. doi: 10.1111/2041-210X.12904. DOI
Hancock S, Armston J, Hofton M, et al. The GEDI simulator: a large-footprint waveform lidar simulator for calibration and validation of spaceborne missions. Earth Space Sci. 2019;6:294–310. PubMed PMC
Held A, Phinn S, Soto-Berelov M, Jones S (2015) AusCover good practice guidelines: a technical handbook supporting calibration and validation activities of remotely sensed data products. 1.1. TERN AusCover
Janík D, Král K, Adam D, et al. Tree spatial patterns of Fagus sylvatica expansion over 37years. For Ecol Manag. 2016;375:134–145. doi: 10.1016/j.foreco.2016.05.017. DOI
Jenkins JC, Chojnacky DC, Heath LS, Birdsey RA. National-scale biomass estimators for United States tree species. For Sci. 2003;49:12–35.
Kellner JR, Hubbell SP. Adult mortality in a low-density tree population using high-resolution remote sensing. Ecology. 2017;98:1700–1709. doi: 10.1002/ecy.1847. PubMed DOI
Kellner JR, Clark DB, Hofton MA. Canopy height and ground elevation in a mixed-land-use lowland Neotropical rain forest landscape. Ecology. 2009;90:3274. doi: 10.1890/09-0254.1. DOI
Lefsky MA, Cohen WB, Harding DJ, et al. Lidar remote sensing of above-ground biomass in three biomes. Glob Ecol Biogeogr. 2002;11:393–399. doi: 10.1046/j.1466-822x.2002.00303.x. DOI
Lichti DD, Jamtsho S. Angular resolution of terrestrial laser scanners. Photogram Rec. 2006;21:141–160. doi: 10.1111/j.1477-9730.2006.00367.x. DOI
Lin Y, Hyyppä J, Kaartinen H, Kukko A. Performance analysis of mobile laser scanning systems in target representation. Remote Sens. 2013;5(7):3140–3155. doi: 10.3390/rs5073140. DOI
Lowe DG (1999) Object recognition from local scale-invariant features. In: Proceedings of the seventh IEEE international conference on computer vision, vol 2, pp 1150–1157
Metcalf CJE, Clark JS, Clark DA. Tree growth inference and prediction when the point of measurement changes: modelling around buttresses in tropical forests. J Trop Ecol. 2009;25:1–12. doi: 10.1017/S0266467408005646. DOI
Milenković M, Ressl C, Karel W, et al. Roughness Spectra derived from multi-scale LiDAR point clouds of a gravel surface: a comparison and sensitivity analysis. ISPRS Int J Geo-Inf. 2018;7:69. doi: 10.3390/ijgi7020069. DOI
Morton DC, Nagol J, Carabajal CC, et al. Amazon forests maintain consistent canopy structure and greenness during the dry season. Nature. 2014;506:221–224. doi: 10.1038/nature13006. PubMed DOI
Muukkonen P. Generalized allometric volume and biomass equations for some tree species in Europe. Eur J For Res. 2007;126:157–166. doi: 10.1007/s10342-007-0168-4. DOI
NISAR Mission Science Handbook (2018) NASA-ISRO SAR (NISAR) Mission Science Users’ Handbook version 1
Pan Y, Birdsey RA, Fang J, et al. A large and persistent carbon sink in the world’s forests. Science. 2011;333:988–993. doi: 10.1126/science.1201609. PubMed DOI
Patterson PL, Healey SP, Ståhl G, et al (2019) Statistical properties of hybrid estimators proposed for GEDI – NASA’s global ecosystem dynamics investigation. Environmental Research Letters
Qiang F, Xin-sheng H. A unified approach of observability analysis for airborne SLAM. J Cent South Univ. 2013;20:2432–2439. doi: 10.1007/s11771-013-1753-y. DOI
Raumonen P, Kaasalainen M, Akerblom M, et al. Fast automatic precision tree models from terrestrial laser scanner data. Rem Sens. 2013;5:491–520. doi: 10.3390/rs5020491. DOI
Réjou-Méchain M, Tymen B, Blanc L, et al. Using repeated small-footprint LiDAR acquisitions to infer spatial and temporal variations of a high-biomass Neotropical forest. Remote Sens Environ. 2015;169:93–101. doi: 10.1016/j.rse.2015.08.001. DOI
Saleska SR, Didan K, Huete AR, da Rocha HR. Amazon forests green-up during 2005 drought. Science. 2007;318:612. doi: 10.1126/science.1146663. PubMed DOI
Samanta A, Ganguly S, Hashimoto H, et al. Amazon forests did not green-up during the 2005 drought. Geophys Res Lett. 2010;37:L05401. doi: 10.1029/2009GL042154. DOI
Scipal K, Arcioni M, Chave J, et al (2010) The BIOMASS mission #x2014; An ESA Earth Explorer candidate to measure the BIOMASS of the earth’s forests. In: 2010 IEEE international geoscience and remote sensing symposium, pp 52–55
Stavros EN, Schimel D, Pavlick R, et al (2017) ISS observations offer insights into plant function. In: Nature Ecology & Evolution. https://www.nature.com/articles/s41559-017-0194. Accessed 14 May 2018 PubMed
Takoudjou SM, Ploton P, Sonké B, et al. Using terrestrial laser scanning data to estimate large tropical trees biomass and calibrate allometric models: a comparison with traditional destructive approach. Methods Ecol Evol. 2018;9:905–916. doi: 10.1111/2041-210X.12933. DOI
Tang H, Dubayah R. Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure. PNAS. 2017;114:2640–2644. doi: 10.1073/pnas.1616943114. PubMed DOI PMC
Trochta J, Krůček M, Vrška T, Král K. 3D Forest: an application for descriptions of three-dimensional forest structures using terrestrial LiDAR. PLoS ONE. 2017;12:e0176871. doi: 10.1371/journal.pone.0176871. PubMed DOI PMC
Wallace L, Lucieer A, Watson C, Turner D. Development of a UAV-LiDAR system with application to forest inventory. Remote Sens. 2012;4:1519–1543. doi: 10.3390/rs4061519. DOI