A Clinical Trial of Transcranial Electromagnetic Treatment in Alzheimer's Disease: Cognitive Enhancement and Associated Changes in Cerebrospinal Fluid, Blood, and Brain Imaging
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu klinické zkoušky, časopisecké články, práce podpořená grantem
PubMed
31403948
PubMed Central
PMC6839500
DOI
10.3233/jad-190367
PII: JAD190367
Knihovny.cz E-zdroje
- Klíčová slova
- Amyloid-β, FDG-PET, brain electromagnetic waves, cognitive enhancement, functional MRI,
- MeSH
- Alzheimerova nemoc diagnostické zobrazování metabolismus psychologie terapie MeSH
- amyloidní beta-protein krev mozkomíšní mok MeSH
- kognice MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- neuropsychologické testy MeSH
- neurozobrazování MeSH
- proteiny tau krev mozkomíšní mok MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- transkraniální magnetická stimulace škodlivé účinky metody MeSH
- výsledek terapie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amyloidní beta-protein MeSH
- proteiny tau MeSH
BACKGROUND: Small aggregates (oligomers) of the toxic proteins amyloid-β (Aβ) and phospho-tau (p-tau) are essential contributors to Alzheimer's disease (AD). In mouse models for AD or human AD brain extracts, Transcranial Electromagnetic Treatment (TEMT) disaggregates both Aβ and p-tau oligomers, and induces brain mitochondrial enhancement. These apparent "disease-modifying" actions of TEMT both prevent and reverse memory impairment in AD transgenic mice. OBJECTIVE: To evaluate the safety and initial clinical efficacy of TEMT against AD, a comprehensive open-label clinical trial was performed. METHODS: Eight mild/moderate AD patients were treated with TEMT in-home by their caregivers for 2 months utilizing a unique head device. TEMT was given for two 1-hour periods each day, with subjects primarily evaluated at baseline, end-of-treatment, and 2 weeks following treatment completion. RESULTS: No deleterious behavioral effects, discomfort, or physiologic changes resulted from 2 months of TEMT, as well as no evidence of tumor or microhemorrhage induction. TEMT induced clinically important and statistically significant improvements in ADAS-cog, as well as in the Rey AVLT. TEMT also produced increases in cerebrospinal fluid (CSF) levels of soluble Aβ1-40 and Aβ1-42, cognition-related changes in CSF oligomeric Aβ, a decreased CSF p-tau/Aβ1-42 ratio, and reduced levels of oligomeric Aβ in plasma. Pre- versus post-treatment FDG-PET brain scans revealed stable cerebral glucose utilization, with several subjects exhibiting enhanced glucose utilization. Evaluation of diffusion tensor imaging (fractional anisotropy) scans in individual subjects provided support for TEMT-induced increases in functional connectivity within the cognitively-important cingulate cortex/cingulum. CONCLUSION: TEMT administration to AD subjects appears to be safe, while providing cognitive enhancement, changes to CSF/blood AD markers, and evidence of stable/enhanced brain connectivity.
College of Pharmacy University of South Florida Tampa FL USA
Left Coast Engineering Escondido CA USA
NeuroEM Therapeutics Inc Phoenix AZ USA
Ocotillo Electromagnetics Inc Chandler AZ USA
RF Exposure Laboratory San Marcos CA USA
School of Aging Studies University of South Florida Tampa FL USA
University Diagnostic Institute Tampa FL USA
University of South Florida Health Byrd Alzheimer's Institute Tampa FL USA
Zobrazit více v PubMed
Pardridge W (2009) Alzheimer’s disease drug development and the problem of the blood-brain barrier. Alzheimers Dement 5, 427–432. PubMed PMC
Gerson J, Kayed R (2013) Formation and propagation of tau oligomeric seeds. Front Neurol 4, 93. PubMed PMC
Cummings J, Lee G, Ritter A, Zhong K (2018) Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement (N Y) 4, 195–214. PubMed PMC
Pedersen J, Heegaard N (2013) Analysis of protein aggregation in neurodegenerative disease. Anal Chem 85, 4215–4227. PubMed
Hayden E, Teplow D (2013) Amyloid-β proteins and Alzheimer’s disease. Alzheimers Res Ther 5, 60–71. PubMed PMC
Goure W, Krafft G, Jerecic J, Hefti F (2014) Targeting the proper amyloid-beta neuronal toxins: A path forward for Alzheimer’s disease immunotherapeutics. Alzheimer Res Ther 6, 42–56. PubMed PMC
Viola K, Klein W (2015) Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol 129, 183–206. PubMed PMC
Guerrero-Muñoz M, Gerson J, Castillo-Carranza D (2015) Tau oligomers: The toxic player at synapses in Alzheimer’s disease. Front Cell Neurosci 9, 464. PubMed PMC
Fa M, Puzzo D, Piacentini R, Staniszewski A, Zhang H, Baltrons M, Li Puma D, Chatterjee I, Li J, Saeed F, Berman H, Ripoli C, Gulisano W, Gonzalez J, Tian H, Costa JA, Lopez P, Davidowitz E, Yu WH, Haroutunian V, Brown LM, Palmeri A, Sigurdsson EM, Duff KE, Teich AF, Honig LS, Sierks M, Moe JG, D’Adamio L, Grassi C, Kanaan NM, Fraser PE, Arancio O (2016) Extracellular tau oligomers produce an immediate impairment of LTP and memory. Sci Rep 6, 19393. PubMed PMC
Cline E, Bicca M, Viola K, Kirssten L (2018) The amyloid-β oligomer hypothesis: Beginning of the third decade. J Alzheimers Dis 64, S567–S610. PubMed PMC
Dragicevic N, Bradshaw P, Mamcartz M, Lin X, Wang L, Cao C, Arendash G (2011) Long-term electromagnetic field treatment enhances brain mitochondrial function of both Alzheimer’s transgenic mice and normal mice: A mechanism for electromagnetic field-induced cognitive benefit? Neuroscience 185, 135–149. PubMed
Zussy C, Brureau A, Keller E, Marchal S, Blayo C, Delair B, Ixart G, Maurice T, Givalois L (2013) Alzheimer’s Disease related markers, cellular toxicity, and behavioral deficits induced six weeks after oligomeric amyloid-beta peptide injection in rats. PloS One 8, e53117. PubMed PMC
Park J, Choi H, Min J, Kim B, Lee S, Yun J, Choi M, Change K, Lee D (2015) Loss of mitofusin 2 links beta-amyloid-mediated mitochondrial fragmentation and Cdk5-induced oxidative stress in neuron cells. J Neurochem 132, 687–702. PubMed
Zempel H, Thies E, Mankelkow E, Mandelkow E-M (2010) Abeta oligomers cause localized calcium elevation, missorting of endogenous tau into dendrites, tau phosphorylation, and destruction of microtubules and spines. J Neurosci 30, 11938–11950. PubMed PMC
Jin M, Shepardson N, Yang T, Chen G, Walsh D, Selkoe D (2011) Soluble amyloid-beta protein dimers isolated from Alzheimer cortex directly induce tau hyperphosphorylation and neuritic degeneration. Proc Natl Acad Sci U S A 108, 5819–5824. PubMed PMC
Zempel H, Mandelkow E (2012) Linking amyloid-beta and tau: Amyloid-beta induced synaptic dysfunction via local wreckage of the neuronal cytoskeleton. Neurodegener Dis 10, 64–72. PubMed
Umeda T, Ramser E, Yamashita M, Nakajima K, Mori H, Silverman M, Tomiyama T (2015) Intracellular amyloid-beta oligomers impair organelle transport and induce dendritic spine loss in primary neurons. Acta Neuropathol Commun 3, 51–65. PubMed PMC
Takahashi R, Almeida G, Kearney F, Yu F, Lin M, Milner T, Gouras G (2004) Oligomerization of Alzheimer’s beta-amyloid within processes and synapses of cultured neurons and brain. J Neurosci 24, 3592–3599. PubMed PMC
Lasagna-Reeves C, Castillo-Carranza D, Kayed R (2011) Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice. Mol Neurodegener 6, 39–52. PubMed PMC
Tousi B, Pascual-Leone A, Sadowsky C, Sabbagh M, Agronin M, Alva G, Armon C, Bernick C, Keegan A, Karantzoulis S (2017) Effects of a combined transcranial magnetic stimulation (TMS) and cognitive training in Alzheimer patients: Safety results of Medical Device Pivotal Multi-Center Study B. Neurodegener Dis 17(Suppl 1), 526.
Lozano A, Fosdick L, Chakravarty C, Leoutsako J-M, Munro C, Oh E, Drake K, Lyman C, Rosenberg P, Anderson W, Tang-Wai DF, Pendergrass JC, Salloway S, Asaad WF, Ponce FA, Burke A, Sabbagh M, Wolk DA, Baltuch G, Okun MS, Foote KD, McAndrews MP, Giacobbe P, Targum SD, Lyketsos CG, Smith GS (2016) A Phase II study of fornix deep brain stimulation in mild Alzheimer’s disease. J Alzheimers Dis 54, 777–787. PubMed PMC
Leoutsaka J, Yan H, Anderson W, Asaad WF, Baltuch G, Burke A (2018) Deep brain stimulation targeting the fornix for mild Alzheimer dementia (the ADvance trial): A two year follow-up including results of delayed activation. J Alzheimers Dis 64, 597–606. PubMed PMC
Arendash G, Sanchez-Ramos J, Mori T, Mamcarz M, Lin X, Runfeldt M, Wang L, Zhang G, Sava V, Tan J, Cao C (2010) Electromagnetic field treatment protects against and reverses cognitive impairment in Alzheimer’s transgenic mice. J Alzheimers Dis 19, 191–210. PubMed
Arendash G, Mori T, Dorsey M, Gonzalez R, Tajiri N, Borlongan C (2012) Electromagnetic treatment to old Alzheimer’s mice reverses β-amyloid deposition, modifies cerebral blood flow, and provides selected cognitive benefit. PLoS One 7, e35751. PubMed PMC
Arendash G (2012) Transcranial electromagnetic treatment against Alzheimer’s disease: Why it has the potential to trump Alzheimer’s disease drug development. J Alzheimers Dis 32, 243–266. PubMed
Arendash G (2016) Review of the evidence that transcranial electromagnetic treatment will be a safe and effective therapeutic against Alzheimer’s disease. J Alzheimers Dis 53, 753–771. PubMed PMC
Mori T, Arendash G (2011) Electromagnetic field treatment enhances neuronal activity: Linkage to cognitive benefit and therapeutic implications for Alzheimer’s disease. J Alzheimers Dis Parkinsonism 1, 2.
Nisbet R, Polanco J-C, Ittner L, Gotz J (2015) Tau aggregation and its interplay with amyloid-β. Acta Neuropathol 129, 207–220. PubMed PMC
Larson M, Sherman M, Greimel S, Kuskowski M, Schneider J, Bennett D, Lesné S (2012) Alpha-synuclein is a novel modulator of Alzheimer’s disease pathophysiology. J Neurosci 32, 10253–10266. PubMed PMC
Robert H, Brown D (2015) Seeking a mechanism for the toxicity of oligomeric alpha-synuclein. Biomolecules 5, 282–305. PubMed PMC
English N, Solomentsev G, O’Brien P (2009) Non-equilibrium molecular dynamics study of electric and low-frequency microwave fields on hen egg white lysozyme. J Chem Phys 131, 035106. PubMed
Gerner C, Haudek V, Schandl U, Bayer B, Gundacker N, Hutter H, Mosgoeller W (2010) Increased protein synthesis by cells exposed to a 1800MHz RF mobile phone electromagnetic field. Int Arch Occup Environm Health 83, 691–702. PubMed PMC
Todorova N, Bentveizen A, English N, Yarovsky I (2016) Electromagnetic-field effects on structure and dynamics of amyloidogenic peptides. J Chem Physics 144, 085101. PubMed
Knopman D, Jack C, Wiste H, Lundt E, Weigand S, Vemuri P, Low V, Kantarci K, Gunter JL, Senjem ML, Mielke MM, Roberts RO, Boeve BF, Petersen RC (2014) 18F-fluorodeoxyglucose positron emission tomography, aging, and apolipoprotein E genotype in cognitively normal persons. Neurobiol Aging 35, 2096–2106. PubMed PMC
Jack C, Knopman D, Weigand S, Wiste H, Vemuri P, Lowe V, Kantarci K, Gunter J, Senjem M, Ivnik R, Roberts R, Rocca W, Boeve B, Petersen R (2012) An operational approach to National Institute on Aging-Alzheimer’s Association criteria for preclinical Alzheimer disease. Ann Neurol 71, 765–775. PubMed PMC
Jack C, Wiste H, Weigand S, Rocca W, Knopman D, Mielke M, Lowe V, Senjem M, Gunter J, Preboske G, Pankratz V, Vemuri P, Petersen R (2014) Age-specific population frequencies of cerebral beta-amyloidosis and neurodegeneration among people with normal cognitive function aged 50-89 years: A cross-section study. Lancet Neurol 13, 997–1005. PubMed PMC
Niemantsverdriet E, Ottoy J, Somers C, De Roeck E, Struyfs H, Soetewey F, Verhaeghe J, Van den Bossche T, Mossevelde S, Goeman J, De Deyn P, Marien P, Verijpt J, Sleegers K, Van Broeckhoven C, Wyffels L, Albert A, Cyssens S, Stoobants S, Staelens S, Bjerke M, Engelborghs S (2017) The cerebrospinal fluid Aβ1-42/Aβ1-40 ratio improves concordance with amyloid-PET for diagnosing Alzheimer’s disease in a clinical setting. J Alzheimers Dis 60, 561–576. PubMed PMC
Leuzy A, Carter S, Chiotis K, Aimkvist O, Wall A, Nordberg A (2015) Concordance and diagnostic accuracy of [11C]PIB PET and cerebrospinal fluid biomarkers in a sample of patients with mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 45, 1077–1088. PubMed
Xie S, Xiao J, Gong G, Zang Y, Wang Y, Wu H, Jiang X (2006) Voxel-based detection of white matter abnormalities in mild Alzheimer disease. Neurology 66, 1845–1849. PubMed
Canu E, McLaren D, Fitzgerald M, Bendlin B, Zoccatelli G, Alessandrini F, Pizzini F, Ricciardi G, Beltramello A, Johnson S, Frisoni G (2010) Microstructural diffusion changes are independent of macrostructural volume loss in moderate to severe Alzheimer’s disease. J Alzheimers Dis 19, 963–976. PubMed PMC
Farivar S, Liu H, Hays R (2004) Half standard deviastion estimate of the minimally important difference in HRQOL scores? Expert Res Pharmacoecon Outcomes Res 4, 515–523. PubMed
Sawilowsky S (2009) New effect size rules of thumb. J Mod Appl Stat Methods 8, 467–474.
Rockwood K (2004) Size of the treatment effect on cognition of cholinesterase inhibition in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 75, 677–685. PubMed PMC
Chen K, Langbaum J, Fleisher A, Ayutyanont N, Reschke C, Lee W, Liu X, Bandy D, Alexander GE, Thompson PM, Foster NL, Harvey DJ, de Leon MJ, Koeppe RA, Jagust WJ, Weiner MW, Reiman EM (2010) Twelve-month metabolic declines in probable Alzheimer’s disease and amnestic mild cognitive impairment assessed using an empirically pre-defined statistical region-of-interest: Findings from the Alzheimer’s Disease Neuroimaging Initiative. Neuroimage 51, 654–664. PubMed PMC
Landau S, Harvey D, Madison C, Koeppe R, Reiman E, Foster N, Weiner M, Jagusta W (2011) Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol Aging 32, 1207–1218. PubMed PMC
Bubb E, Metzler-Baddeley C, Aggleton J (2018) The cingulum bundle: Anatomy, function, and dysfunction. Neurosci Biobehav Rev 92, 104–127. PubMed PMC
Nowrangi M, Lyketsos C, Leoutsakos J-M, Oishi K, Albert M, Mori S, Mielke M (2013) Longitudinal, region-specific course of diffusion tensor imaging measures in mild cognitive impairment and Alzheimer’s disease. Alzheimers Dement 9, 519–528. PubMed PMC
Podhorna J, Krahnke T, Shear M, Harrison J, Alzheimer’s Disease Neuroimaging Initiative (2016) Alzheimer’s Disease assessment scale – Cognitive subscale variants in mild cognitive impairment and mild Alzheimer’s disease; change over time and the effect of enrichment strategies. Alzheimers Res Ther 8, 8. PubMed PMC
Moradi E, Hallikainen I, Hanninen T, Tohka J (2017) Rey’s Auditory Verbal Learning Test scores can be predicted from whole brain MRI in Alzheimer’s disease. Neuroimage Clin 13, 415–427. PubMed PMC
Tierney M, Szalai J, Snow W, Fisher R, Nores A, Nadon G, Dunn E, George-Hyslop P (1996) Prediction of probable Alzheimer’s disease in memory-impaired patients: A prospective longitudinal study. Neurology 46, 661–665. PubMed
Estévez-González A, Kulisevsky J, Boltes A, Otermín P, García-Sánchez C (2003) Rey verbal learning test is a useful tool for differential diagnosis in the preclinical phase of Alzheimer’s disease: Comparison with mild cognitive impairment and normal aging. Int J Geriatr Psychiatry 18, 1021–1028. PubMed
Schoenberg M, Dawson K, Duff K, Patton D, Scott J, Adams R (2006) Test performance and classification statistics for the Rey auditory verbal learning test in selected clinical samples. Arch Clin Neuropsychol 21, 693–703. PubMed
Vivot A, Power M, Glymour M, Mayeda E, Benitez A, Spiro A, Manly J, Proust-Lima C, Dufouil C, Gross A (2016) Jump, hop, or skip: Modeling practice effects in studies of determinants of cognitive change in older adults. Am J Epidemiol 183, 302–314. PubMed PMC
Benedict R, Zgalijardic D (1998) Practice effects during repeated administrations of memory tests with and without alternate forms. J Clin Exp Neuropsychol 20, 339–352. PubMed
Jacobs D, Ard M, Salmon D, Galasko D, Bondi M, Edland S (2017) Potential implications of practice effects in Alzheimer’s disease prevention trials. Alzheimers Dement (NY) 3, 531–535. PubMed PMC
Mathews M, Abner E, Kryscio R, Jicha G, Cooper G, Smith C, Caban-Holt A, Schmitt F (2014) Diagnostic accuracy and practice effects in the National Alzheimer’s Coordinating Center Uniform Data Set neuropsychological battery. Alzheimers Dement 10, 675–683. PubMed PMC
Mannu P, Rinaldi S, Fontani V, Castagna A (2011) Radio electric asymmetric brain stimulation in the treatment of behavioral and psychiatric symptoms in Alzheimer disease. Clin Interv Aging 6, 207–211. PubMed PMC
Guerriero F, Botarelli E, Mele G, Polo L, Zoncu D, Renati P, Garlata C, Rollone M, Ricevuti G, Maurizi N, Francis M, Rondanelli M, Perna S, Guido D, Mannu P (2015) An innovative intervention for the treatment of cognitive impairment – Emisymmetric bilateral stimulation improves cognitive functions in Alzheimer’s disease and mild cognitive impairment: An open-label study. Neuropsychiatr Dis Treat 11, 2391–2404. PubMed PMC
Banaceur S, Banasr S, Sakly M, Abdelmelek H (2013) Whole body exposure to 2.4GHz WIFI signals: Effects on cognitive impairment in adult triple transgenic mouse models of Alzheimer’s disease (3xTg-AD). Behav Brain Res 240, 197–201. PubMed
Jeong Y, Kang G, Kwon J, Choi H, Pack J, Kim N, Lee Y, Le H (2015) 1950MHz electromagnetic fields ameliorate A-beta pathology in Alzheimer’s disease mice. Curr Alzheimer Res 12, 481–492. PubMed PMC
Son Y, Kim J, Jeong Y, Jeong Y, Kwon J, Choi H-D (2018) Long-term RF exposure on behavior and cerebral glucose metabolism in 5xFAD mice. Neurosci Lett 666, 64–69. PubMed
Blennow K, Dubois B, Fagan A, Lewczuk P, de Leon M, Hampel H (2015) Clinical utility of cerebrospinal fluid biomarkers in the diagnosis of early Alzheimer’s disease. Alzheimers Dement 11, 58–69. PubMed PMC
Lue L-F, Guerra A, Walker D (2017) Amyloid beta and tau as Alzheimer’s disease blood biomarkers: Promise from new technologies. Neurol Ther 6(Suppl 1), S25–S36. PubMed PMC
Lue L-F, Sabbagh M, Chiu M-J, Jing N, Snyder N, Schmitz C, Guerra A, Belden (2017) Plasma levels of Aβ42 and tau identified probable Alzheimer’s dementia: Findings in two cohorts. Front Aging Neurosci 9, 226. PubMed PMC
Han P, Serrano G, Beach T, Caselli R, Yin J, Zhuang N (2017) A Quantitative analysis of brain soluble tau and the tau secretion factor. J Neuropathol Exp Neurol 76, 44–51. PubMed PMC
Byerke M, Engelborghs (2018) Cerebrospinal fluid biomarkers for early and differential Alzheimer’s disease diagnosis. J Alzheimers Dis 62, 1199–1209. PubMed PMC
Palmgvist S, Zetterberg H, Mattsson N, Johansson P, Minthon L, Blennow K, Olsson M, Hansson O, Swedish BioFINDER Study Group (2015) Detailed comparison of amyloid PET and CSF biomarkers for identifying early Alzheimer disease. Neurology 85, 1240–1249. PubMed PMC
Fukumoto H, Tokuda T, Kasai T, Ishigami N, Hidaka H, Kondo M (2010) High-molecular-weight β-amyloid oligomers are elevated in cerebrospinal fluid of Alzheimer patients. FASEB J 24, 2716–2726. PubMed
Gao C, Yam A, Wang X, Magdangal E, Salisbury C, Peretz D, Zuckermann RN, Connolly MD, Hansson O, Minthon L, Zetterberg H, Blennow K, Fedynyshyn JP, Allauzen S (2010) Aβ40 oligomers identified as a potential biomarker for the diagnosis of Alzheimer’s disease. PLoS One 5, e15725. PubMed PMC
Funke S (2011) Detection of soluble amyloid-β oligomers and insoluble high-molecular-weight particles in CSF: Development of methods with potential for diagnosis and therapy monitoring of Alzheimer’s Disease. Int J Alzheimers Dis 2011, 151645. PubMed PMC
Holtta M, Hansson O, Andreasson U, Hertze J, Minthon L, Naogga K (2013) Evaluating amyloid-β oligomers in cerebrospinal fluid as a biomarker for Alzheimer’s disease. PLoS One 8, e66381. PubMed PMC
Englund H, Gunnarsson M, Brundin R, Hedlund M, Kilander L, Lannfelt L, Pettersson FE (2009) Oligomerization partially explains the lowering of Aβ42 in Alzheimer’s disease cerebrospinal fluid. Neurodegener Dis 6, 139–147. PubMed
Li G, Sokal I, Quinn J, Leverenz J, Brodey M, Schellenberg G, Kaye J, Raskind M (2007) CSF tau/Abeta42 ratio for increased risk of mild cognitive impairment: A follow-up study. Neurology 69, 631–639. PubMed
Racine A, Koscik R, Nicholas C, Clark L, Okonkwo O, Oh J, Hillmer A, Murali D, Barnhart T, Betthauser T, Gallagher C, Rowley H, Dowling N, Asthana S, Bendlin B, Blennow K, Zetterberg H, Carlsson C, Christian B, Johnson S (2016) Cerebrospinal fluid ratios with Abeta42 predict preclinical brain beta-amyloid accumulation. Alzheimers Dement (Amst) 2, 27–38. PubMed PMC
Rissin D, Kan C, Song L, Rivnak A, Fishburn M, Shao Q, Piech T, Ferrell EP, Meyer RE, Campbell TG, Fournier DR, Duffy DC (2013) Multiplexed single molecule immunoassays. Lab Chip 13, 2902–2911. PubMed
Blennow K, Zetterberg H (2015) Understanding biomarkers of neurodegeneration: Ultrasensitive detection techniques pave the way for mechanistic understanding. Nat Med 21, 217–219. PubMed
Hampel H, Shen Y, Walsh D, Aisen P, Shaw L, Zetterberg H, Trojanowski JQ, Blennow K (2010) Biological markers of amyloid beta-related mechanisms in Alzheimer’s disease. Exp Neurol 223, 334–346. PubMed PMC
Chiu M, Yang S, Horng H, Yang C, Chen T, Chieh J, Chen HH, Chen TC, Ho CS, Chang SF, Liu HC, Hong CY, Yang HC (2013) Combined plasma biomarkers for diagnosing mild cognition impairment and Alzheimer’s disease. ACS Chem Neurosci 4, 1530–1536. PubMed PMC
Zetterberg H, Wilson D, Andreasson U, Minthon L, Blennow K, Randall J, Hansson O (2013) Plasma tau levels in Alzheimer’s disease. Alzheimers Res Ther 5, 9. PubMed PMC
Toledo J, Shaw L, Trojanowski J (2013) Plasma amyloid beta measurements - a desired but elusive Alzheimer’s disease biomarker. Alzheimers Res Ther 5, 8. PubMed PMC
Xia W, Yang T, Shankar G, Smith I, Shen Y, Walsh D, Selkoe D (2009) A specific enzyme-linked immunosorbent assay for measuring β-amyloid protein oligomers in human plasma and brain tissue of patients with Alzheimer disease. Arch Neurol 66, 190–199. PubMed PMC
Zhou L, Chan K, Chu L, Kwan J, Song Y, Chen L, Ho P, Cheng O, Ho J, Lam K (2012) Plasma amyloid-β oligomers level is a biomarker for Alzheimer’s disease diagnosis. Biochem Biophys Res Commun 423, 697–702. PubMed
Wang M, Yi S, Han J-Y, Park S, Jang JJ-W, Chun I, Kim S (2017) Oligomeric forms of amyloid-β protein in plasma as a potential blood-based biomarker for Alzheimer’s disease. Alzheimers Res Ther 9, 98–107. PubMed PMC
Chiu M, Chen Y, Chen T, Yang SY, Yang FP, Tseng TW, Chieh JJ, Chen JC, Tzen KY, Hua MS, Horng HE (2014) Plasma tau as a window to the brain-negative associations with brain volume and memory function in mild cognitive impairment and early Alzheimer’s disease. Hum Brain Mapp 35, 3132–3142. PubMed PMC
Wang T, Xiao S, Liu Y, Lin Z, Su N, Li X, Li G, Zhang M, Fang Y (2014) The efficacy of plasma biomarkers in early diagnosis of Alzheimer’s disease. Int J Geriatr Psychiatry 29, 713–719. PubMed
Sparks D, Kryscio R, Sabbagh M, Ziolkowski C, Lin Y, Sparks LM, Liebsack C, Johnson-Traver S (2012) Tau is reduced in AD plasma and validation of employed ELISA methods. Am J Neurodegener Dis 1, 99–106. PubMed PMC
Bloudek L, Spackman D, Blankenburg M, Sullivan S (2011) Review and meta-analysis of biomarkers and diagnostic imaging in Alzheimer’s disease. J Alzheimers Dis 26, 627–645. PubMed
Spiegel J, Pirraglia E, Osorio R, Glodzik L, Li Y, Tsui W, Saint Lousi L, Randall C, Butler T, Xu J, Zinkowski R, Zetterberg H, Fortea J, Fossati S, Wisniewski T, Davies P, Blennow K, de Leon M (2016) Greater specificity for cerebrospinal fluid P-tau231 over P-tau181 in the differentiation of healthy controls from Alzheimer’s disease. J Alzheimers Dis 49, 93–100. PubMed PMC
Glodzik L, de Santi S, Tsui W, Mosconi L, Zinkowski R, Pirraglia E, Wang K, Li Y, Rich K, Zetterberg H, Blennow K, Mehta P, de Leon M (2011) Phosphorylated tau 231, memory decline and medial temporal atrophy in normal elders. Neurobiol Aging 32, 2131–2141. PubMed PMC
Takeda S, Commins C, DeVos S, Nobuhara C, Wegmann S, Roe A, Costantino I, Fan Z, Nichollis S, Sherman A, Trisini A, Scherzer C, Carlson G, Pitstick R, Peskind E, Raskind M, Li G, Montine T, Frosch M, Hyman B (2016) Seed-competent HMW tau species accumulates in the cerebrospinal fluid of Alzheimer’s disease mouse model and human patients. Ann Neurol 80, 355–367. PubMed PMC
Reiman E, Caselli R, Yun L, Chen K, Bandy D, Minoshima S, Thibodeau S, Osborne D (1996) Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein. N Engl J Med 334, 752–758. PubMed
Reiman E, Chen K, Alexander G, Caselli R, Bandy D, Osborne D, Saunders A, Hardy J. (2004) Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia. Proc Natl Acad Sci U S A 101, 284–289. PubMed PMC
Volkow N, Tomasi D, Wang G, Vaska P, Fowler J, Telang F, Alexoff D, Logan J, Wong C (2011) Effects of cell phone radiofrequency signal exposure on brain glucose metabolism. JAMA 305, 808–813. PubMed PMC
Nir T, Jahanshada N, Villaon-Reina J, Toga A, Jack C, Weiner M (2013) Effectiveness of regional DTI measures in distinguishing Alzheimer’s disease, MCI, and normal aging. Neuroimage Clin 3, 180–195. PubMed PMC
Acosta-Cabronero J, Nestor P (2014) Diffusion tensor imaging in Alzheimer’s disease: Insights into the limbic-diencephalic network and methodological considerations. Front Aging Neurosci 6, 266. PubMed PMC
Chitra R, Bairavi K, Vinisha V, Kavitha A (2017) Analysis of structural connectivity on progression of Alzheimer’s disease using diffusion tensor imaging. 2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN).
Blank M, Goodman R (2004) Initial interactions in electromagnetic field-induced biosynthesis. J Cell Physiol 199, 359–363. PubMed
Segwa R, Kaur K (1999) Microwave absorption in oligomers of ethylene glycol. Indian J Biochem Biophys 36, 325–329. PubMed
Ciepak A (2017) Protein folding, misfolding, and aggregation: The importance of two-electron stabilizing interactions. PLoS One 12, e0180905. PubMed PMC
Bentwich J, Dobronevsky E, Aichenbaum S, Shorer R, Peretz R, Khaigrekht M, Marton RG, Rabey JM (2011) Beneficial effect of repetitive transcranial magnetic stimulation combined with cognitive training for the treatment of Alzheimer’s disease: A proof of concept study. J Neural Transm 118, 463–471. PubMed
Laxton A, Tang-Wai D, McAndrews M, Zumsteg D, Wennberg R, Keren R, Wherrett J, Naglie G, Hamani C, Smith G, Lozano A (2010) A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease. Ann Neurol 68, 521–534. PubMed
Emerging Alzheimer's disease treatment paradigms: A late-stage clinical trial review