Contrasting effects of host identity, plant community, and local species pool on the composition and colonization levels of arbuscular mycorrhizal fungal community in a temperate grassland
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31408907
DOI
10.1111/nph.16112
Knihovny.cz E-zdroje
- Klíčová slova
- arbuscular mycorrhizal fungi (AMF), diversity, forbs, grasses, host identity effect, microscopy, next-generation sequencing,
- MeSH
- fylogeneze MeSH
- interakce hostitele a patogenu * MeSH
- metoda Monte Carlo MeSH
- multivariační analýza MeSH
- mykobiom * MeSH
- mykorhiza růst a vývoj fyziologie MeSH
- pastviny * MeSH
- počet mikrobiálních kolonií MeSH
- pravděpodobnostní funkce MeSH
- půda chemie MeSH
- rostliny mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- půda MeSH
Arbuscular mycorrhizal fungi (AMFs) are important plant symbionts, but we know little about the effects of plant taxonomic identity or functional group on the AMF community composition. To examine the effects of the surrounding plant community, of the host, and of the AMF pool on the AMF community in plant roots, we manipulated plant community composition in a long-term field experiment. Within four types of manipulated grassland plots, seedlings of eight grassland plant species were planted for 12 wk, and AMFs in their roots were quantified. Additionally, we characterized the AMF community of individual plots (as their AMF pool) and quantified plot abiotic conditions. The largest determinant of AMF community composition was the pool of available AMFs, varying at metre scale due to changing soil conditions. The second strongest predictor was the host functional group. The differences between grasses and dicotyledonous forbs in AMF community variation and diversity were much larger than the differences among species within those groups. High cover of forbs in the surrounding plant community had a strong positive effect on AMF colonization intensity in grass hosts. Using a manipulative field experiment enabled us to demonstrate direct causal effects of plant host and surrounding vegetation.
Zobrazit více v PubMed
Albarracín Orio AG, Bruecher E, Ducasse DA. 2016. Switching between monocot and dicot crops in rotation schemes of Argentinean productive fields results in an increment of arbuscular mycorrhizal fungi diversity. Applied Soil Ecology 98: 121-131.
Anslan S, Bahram M, Hiiesalu I, Tedersoo L. 2017. PipeCraft: flexible open-source toolkit for bioinformatics analysis of custom high-throughput amplicon sequencing data. Molecular Ecology Resources 17: e234-e240.
Antoninka A, Reich PB, Johnson NC. 2011. Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence arbuscular mycorrhizal fungi in a grassland ecosystem. New Phytologist 192: 200-214.
Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting linear mixed-effect models using lme4. Journal of Statistical Software 67: 1-48.
Bever JD, Morton JB, Antonovics J, Schultz PA. 1996. Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland. Journal of Ecology 84: 71-82.
Blanchet FG, Legendre P, Borcard D. 2008. Forward selection of explanatory variables. Ecology 89: 2623-2632.
Bouffaud ML, Creamer RE, Stone D, Plassart P, van Tuinen D, Lemanceau P, Wipf D, Redecker D. 2016. Indicator species and co-occurrence in communities of arbuscular mycorrhizal fungi at the European scale. Soil Biology and Biochemistry 103: 464-470.
ter Braak CJF, Šmilauer P. 2018. Canoco reference manual and user's guide: software for ordination (version 5.10). Ithaca, NY, USA: Microcomputer Power, 536.
Bücking H, Kafle A. 2015. Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: current knowledge and research gaps. Agronomy 5: 587-612.
Camenzind T, Hempel S, Homeier J, Horn S, Velescu A, Wilcke W, Rillig MC. 2014. Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest. Global Change Biology 20: 3646-3659.
Chagnon PL, Bradley RL, Maherali H, Klironomos JN. 2013. A trait-based framework to understand life history of mycorrhizal fungi. Trends in Plant Science 18: 484-491.
Dassen S, Cortois R, Martens H, de Hollander M, Kowalchuk GA, van der Putten WH, De Deyn GB. 2017. Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity. Molecular Ecology 26: 4085-4098.
Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, Ba A, Burla S, Diedhiou AG, Hiiesalu I, Jairus T et al. 2015. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349: 970-973.
De Deyn GB, Quirk H, Bardgett RD. 2011. Plant species richness, identity and productivity differentially influence key groups of microbes in grassland soils of contrasting fertility. Biology Letters 7: 75-79.
Devi SG, Fathima AA, Radha S, Arunraj R, Curtis WR, Ramya M. 2015. A rapid and economical method for efficient DNA extraction from diverse soils suitable for metagenomic applications. PLoS ONE 10: e0132441.
Díaz S, Symstad AJ, Chapin FS III, Wardle DA, Huenneke LF. 2003. Functional diversity revealed by removal experiments. Trends in Ecology and Evolution 18: 140-146.
Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11-15.
Dumbrell AJ, Ashton PD, Aziz N, Feng G, Nelson M, Dytham C, Fitter AH, Helgasson T. 2011. Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. New Phytologist 190: 794-804.
Egerton-Warburton LM, Johnson NC, Allen EB. 2007. Mycorrhizal community dynamics following nitrogen fertilization: a cross-site test in five grasslands. Ecological Monographs 77: 527-544.
Eom AH, Hartnett DC, Wilson GWT. 2000. Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia 122: 435-444.
Fitzsimons MS, Miller RM, Jastrow JD. 2008. Scale-dependent niche axes of arbuscular mycorrhizal fungi. Oecologia 158: 117-127.
Gosling P, Mead A, Proctor M, Hammond JP, Bending GD. 2013. Contrasting arbuscular mycorrhizal communities colonizing different host plants show a similar response to a soil phosphorus concentration gradient. New Phytologist 198: 546-556.
Gui W, Ren H, Liu N, Zhang Y, Cobb AB, Wilson GWT, Sun X, Hu J, Xiao Y, Zhang F et al. 2018. Plant functional group influences arbuscular mycorrhizal fungal abundance and hyphal contribution to soil CO2 efflux in temperate grasslands. Plant and Soil 432: 157-170.
Guindon S, Dufavard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59: 307-321.
Harley JL, Harley EL. 1987. A check-list of mycorrhiza in the British flora. New Phytologist 105(Suppl 1): 1-102.
Hart MM, Reader RJ, Klironomos JN. 2001. Life-history strategies of arbuscular mycorrhizal fungi in relation to their successional dynamics. Mycologia 93: 1186-1194.
He L, Yang H, Yu Z, Tang J, Xu L, Chen X. 2014. Arbuscular mycorrhizal fungal phylogenetic groups differ in affecting host plants along heavy metal levels. Journal of Environmental Sciences 26: 2034-2040.
Hiiesalu I, Partel M, Davison J, Gerhold P, Metsis M, Moora M, Öpik M, Vasar M, Zobel M, Wilson SD. 2014. Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass. New Phytologist 203: 233-244.
Horn S, Hempel S, Verbruggen E, Rillig MC, Caruso T. 2017. Linking the community structure of arbuscular mycorrhizal fungi and plants: a story of interdependence? The ISME Journal 11: 1400-1411.
Kembel SW, Cowan PD, Helmus MR, Cornwell WJ, Morlon H, Ackerly DD, Blomberg SP, Webb CO. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26: 1463-1464.
Klironomos JN. 2003. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84: 2292-2301.
König S, Wubet T, Dormann CF, Hempel S, Rener C, Buscot F. 2010. TaqMan real-time PCR assays to assess arbuscular mycorrhizal responses to field manipulation of grassland biodiversity: effects of soil characteristics, plant species richness, and functional traits. Applied and Environmental Microbiology 76: 3765-3775.
Konvalinková T, Püschel D, Řezáčová V, Gryndlerová H, Jansa J. 2017. Carbon flow from plant to arbuscular mycorrhizal fungi is reduced under phosphorus fertilization. Plant and Soil 419: 319-333.
Kubát K, Hrouda L, Chrtek Jj, Kaplan Z, Kirschner J, Štěpánek J. 2002. Klíč ke květeně České republiky [Key to the flora of Czech Republic]. Prague, Czech Republic: Academia.
Lee J, Lee S, Young JPW. 2008. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiology Ecology 65: 339-349.
Legendre P, Legendre L. 2012. Numerical ecology, 3rd English edn. Amsterdam, the Netherlands: Elsevier, 990 pp.
Lekberg Y, Helgasson T. 2018. In situ mycorrhizal function - knowledge gaps and future directions. New Phytologist 220: 957-962.
Lekberg Y, Waller LP. 2016. What drives differences in arbuscular mycorrhizal fungal communities among plant species? Fungal Ecology 24: 135-138.
López-García A, Varela-Cervero S, Vasar M, Öpik M, Barea JM, Azcón-Aguilar C. 2017. Plant traits determine the phylogenetic structure of arbuscular mycorrhizal fungal communities. Molecular Ecology 26: 6948-6959.
Maherali H, Klironomos JN. 2012. Phylogenetic and trait-based assembly of arbuscular mycorrhizal fungal communities. PLoS ONE 7: e36695.
Mariotte P, Robroek BJM, Jassey V, Buttler A. 2015. Subordinate plants mitigate drought effects on soil ecosystem processes by stimulating fungi. Functional Ecology 29: 1578-1586.
Mehlich A. 1984. Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis 15: 1409-1416.
Middleton EL, Richardson S, Koziol L, Palmer CE, Yermakov Z, Henning JA, Schultz PA, Bever JD. 2015. Locally adapted arbuscular mycorrhizal fungi improve vigor and resistance to herbivory of native prairie plant species. Ecosphere 6: article 276.
Neuenkamp L, Moora M, Öpik M, Davison J, Gerz M, Mannisto M, Jairus T, Vasar M, Zobel M. 2018. The role of plant mycorrhizal type and status in modulating the relationship between plant and arbuscular mycorrhizal fungal communities. New Phytologist 220: 1236-1247.
Oehl F, Laczko E, Oberholzer HR, Jansa J, Egli S. 2017. Diversity and biogeography of arbuscular mycorrhizal fungi in agricultural soils. Biology and Fertility of Soils 53: 777-797.
Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier U, Zobel M. 2010. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytologist 188: 223-241.
Orchard S, Standish RJ, Dickie IA, Renton M, Walker C, Moot D, Ryan MH. 2017. Fine root endophytes under scrutiny: a review of the literature on arbuscule-producing fungi recently suggested to belong to the Mucoromycotina. Mycorrhiza 27: 619-638.
Quinn GR, Keough MJ. 2002. Experimental design and data analysis for biologists. Cambridge, UK: Cambridge University Press, 537.
R Core Team. 2018. R: a language and environment for statistical computing. Version 3.5.1. Vienna, Austria: R Foundation for Statistical Computing. [WWW document] URL https://www.r-project.org.
Rasmussen PU, Hugerth IW, Blanchet FG, Andersson AF, Lindahl BD, Tack AJM. 2018. Multiscale patterns and drivers of arbuscular mycorrhizal fungal communities in the roots and root-associated soil of a wild perennial herb. New Phytologist 220: 1248-1261.
Rodríguez F, Oliver JL, Marin A, Medina JR. 1990. The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142: 485-501.
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ et al. 2009. Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied Environmental Microbiology 75: 7537-7541.
Simpson GL. 2009. cocorresp: co-correspondence analysis ordination methods. R package v.0.3-0. [WWW document] URL https://cran.r-project.org/package=cocorresp.
Šmilauer P, Lepš J. 2014. Multivariate analysis of ecological data using Canoco 5, 2nd edn. Cambridge, UK: Cambridge University Press, 362.
Šmilauer P, Šmilauerová M. 2013. Asymmetric relationship between grasses and forbs: results from a field experiment under nutrient limitation. Grass and Forage Science 68: 186-198.
Šmilauerová M, Šmilauer P. 2016. Functional groups affect seedling survival both through a negative soil feedback and changes in abiotic conditions. Preslia 88: 347-368.
Swenson NG. 2014. Functional and phylogenetic ecology in R. New York, NY, USA: Springer, 212.
Unger S, Friede M, Hundacker J, Volkmar K, Beyschlag W. 2016. Allocation trade-off between root and mycorrhizal surface defines nitrogen and phosphorus relations in 13 grassland species. Plant and Soil 407: 279-292.
Van der Heijden MGA, Martin FM, Sellose MA, Sanders IR. 2018. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist 205: 1406-1423.
Van der Heijden MGA, Scheublin TR. 2007. Functional traits in mycorrhizal ecology: their use for predicting the impact of arbuscular mycorrhizal fungal communities on plant growth and ecosystem functioning. New Phytologist 174: 244-250.
Van Geel M, Jacquemyn H, Plue J, Saar L, Kasari L, Peeters G, van Acker K, Honnay O, Ceulemans T. 2018. Abiotic rather than biotic filtering shapes the arbuscular mycorrhizal fungal communities of European seminatural grasslands. New Phytologist 220: 1262-1272.
Vasar M, Andreson R, Davison J, Jairus T, Moora M, Remm M, Young JPW, Zobel M, Öpik M. 2017. Increased sequencing depth does not increase captured diversity of arbuscular mycorrhizal fungi. Mycorrhiza 27: 761-773.
Verbylaitė R, Beišys P, Rimas V, Kuusiene S. 2010. Comparison of ten DNA extraction protocols from wood of European aspen (Populus tremula L.). Baltic Forestry 16: 35-42.
Větrovský T, Baldrian P, Morais D. 2018. Seed 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics 34: 2292-2294.
Vierheilig H, Schweiger P, Brundrett M. 2005. An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots. Physiologia Plantarum 125: 393-404.
Weremijewicz J, da Silveira Lobo O'Reilly Sternberg L, Janos DP. 2018. Arbuscular common mycorrhizal networks mediate intra- and interspecific interactions of two prairie grasses. Mycorrhiza 28: 71-83.
Yang H, Zhang Q, Koide RT, Hoeksema JD, Tang J, Bian X, Hu S, Chen X. 2017. Taxonomic resolution is a determinant of biodiversity effects in arbuscular mycorrhizal fungal communities. Journal of Ecology 105: 219-228.
Zobel M, Öpik M. 2014. Plant and arbuscular mycorrhizal fungal (AMF) communities - which drives which? Journal of Vegetation Science 25: 1133-1140.
GENBANK
MK611457, MK611550