Element content and expression of genes of interest in guard cells are connected to spatiotemporal variations in stomatal conductance

. 2020 Jan ; 43 (1) : 87-102. [epub] 20190827

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31423592

Element content and expression of genes of interest on single cell types, such as stomata, provide valuable insights into their specific physiology, improving our understanding of leaf gas exchange regulation. We investigated how far differences in stomatal conductance (gs ) can be ascribed to changes in guard cells functioning in amphistomateous leaves. gs was measured during the day on both leaf sides, on well-watered and drought-stressed trees (two Populus euramericana Moench and two Populus nigra L. genotypes). In parallel, guard cells were dissected for element content and gene expressions analyses. Both were strongly arranged according to genotype, and drought had the lowest impact overall. Normalizing the data by genotype highlighted a structure on the basis of leaf sides and time of day both for element content and gene expression. Guard cells magnesium, phosphorus, and chlorine were the most abundant on the abaxial side in the morning, where gs was at the highest. In contrast, genes encoding H+ -ATPase and aquaporins were usually more abundant in the afternoon, whereas genes encoding Ca2+ -vacuolar antiporters, K+ channels, and ABA-related genes were in general more abundant on the adaxial side. Our work highlights the unique physiology of each leaf side and their analogous rhythmicity through the day.

Zobrazit více v PubMed

Acharya, B. R., & Assmann, S. M. (2009). Hormone interactions in stomatal function. Plant Molecular Biology, 69(4), 451-462. https://doi.org/10.1007/s11103-008-9427-0

Agurla, S., & Raghavendra, A. S. (2016). Convergence and divergence of signaling events in guard cells during stomatal closure by plant hormones or microbial elicitors. Frontiers in Plant Science, 7(1332). https://doi.org/10.3389/fpls.2016.01332

Almeida-Rodriguez, A. M., Cooke, J. E. K., Yeh, F., & Zwiazek, J. J. (2010). Functional characterization of drought-responsive aquaporins in Populus balsamifera and Populus simonii × balsamifera clones with different drought resistance strategies. Physiologia Plantarum, 140(4), 321-333. https://doi.org/10.1111/j.1399-3054.2010.01405.x

Amodeo, G., Talbott, L. D., & Zeiger, E. (1996). Use of potassium and sucrose by onion guard cells during a daily cycle of osmoregulation. Plant and Cell Physiology, 37(5), 575-579. https://doi.org/10.1093/oxfordjournals.pcp.a028983

Amsellem, J., Nicaise, G., Blaineau, S., Quintana, C., Escaig, J., Roinel, N., … Vicario, E. (1983). Microanalyse × en biologie. Société Française de Microscopie Electronique, Paris.

Assmann, S. M. (1993). Signal transduction in guard cells. Annual Review of Cell Biology, 9(1), 345-375. https://doi.org/10.1146/annurev.cb.09.110193.002021

Barragan, V., Leidi, E. O., Andres, Z., Rubio, L., De Luca, A., Fernandez, J. A., … Pardo, J. M. (2012). Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell, 24(3), 1127-1142. https://doi.org/10.1105/tpc.111.095273

Bauer, H., Ache, P., Lautner, S., Fromm, J., Hartung, W., Al-Rasheid, K. A. S., … Hedrich, R. (2013). The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Current Biology, 23(1), 53-57. https://doi.org/10.1016/j.cub.2012.11.022

Berry, J. A., Beerling, D. J., & Franks, P. J. (2010). Stomata: Key players in the earth system, past and present. Current Opinion in Plant Biology, 13(3), 232-239. https://doi.org/10.1016/j.pbi.2010.04.013

Bigot, S., Buges, J., Gilly, L., Jacques, C., Boulch, P. L., Berger, M., … Couée, I. (2018). Pivotal roles of environmental sensing and signaling mechanisms in plant responses to climate change. Global Change Biology, 24(12), 5573-5589. https://doi.org/10.1111/gcb.14433

Bizet, F., Bogeat-Triboulot, M. B., Montpied, P., Christophe, A., Ningre, N., Cohen, D., & Hummel, I. (2015). Phenotypic plasticity toward water regime: Response of leaf growth and underlying candidate genes in Populus. Physiologia Plantarum, 154(1), 39-53. https://doi.org/10.1111/ppl.12271

Bonan, G. B. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320(5882), 1444-1449. https://doi.org/10.1126/science.1155121

Brodribb, T. J., & Cochard, H. (2009). Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiology, 149(1), 575-584. https://doi.org/10.1104/pp.108.129783

Brunner, A. M., Yakovlev, I. A., & Strauss, S. H. (2004). Validating internal controls for quantitative plant gene expression studies. BMC Plant Biology, 4(1), 14. https://doi.org/10.1186/1471-2229-4-14

Buckley, T. N. (2005). The control of stomata by water balance. New Phytologist, 168(2), 275-291. https://doi.org/10.1111/j.1469-8137.2005.01543.x

Buckley, T. N., John, G. P., Scoffoni, C., & Sack, L. (2015). How does leaf anatomy influence water transport outside the xylem? Plant Physiology, 168(4), 1616-1635. https://doi.org/10.1104/pp.15.00731

Byrt, C. S., Zhao, M., Kourghi, M., Bose, J., Henderson, S. W., Qiu, J., … Tyerman, S. (2017). Non-selective cation channel activity of aquaporin AtPIP2;1 regulated by Ca2+ and pH. Plant, Cell & Environment, 40(6), 802-815. https://doi.org/10.1111/pce.12832

Ceulemans, R., Hinckley, T. M., & Impens, I. (1989). Stomatal response of hybrid poplar to incident light, sudden darkening and leaf excision. Physiologia Plantarum, 75(2), 174-182. https://doi.org/10.1111/j.1399-3054.1989.tb06165.x

Chaumont, F., & Tyerman, S. D. (2014). Aquaporins: Highly regulated channels controlling plant water relations. Plant Physiology, 164(4), 1600-1618. https://doi.org/10.1104/pp.113.233791

Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought - from genes to the whole plant. Functional Plant Biology, 30(3), 239-264. https://doi.org/10.1071/FP02076

Chen, S. L., Wang, S. S., Altman, A., & Huttermann, A. (1997). Genotypic variation in drought tolerance of poplar in relation to abscisic acid. Tree Physiology, 17(12), 797-803. https://doi.org/10.1093/treephys/17.12.797

Chen, Z.-H., Hills, A., Bätz, U., Amtmann, A., Lew, V. L., & Blatt, M. R. (2012). Systems dynamic modeling of the stomatal guard cell predicts emergent behaviors in transport, signaling, and volume control. Plant Physiology, 159(3), 1235-1251. https://doi.org/10.1104/pp.112.197350

Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogee, J., Allard, V., … Valentini, R. (2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437(7058), 529-533. https://doi.org/10.1038/nature03972

Clarkson, D. T., & Hanson, J. B. (1980). The mineral nutrition of higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 31, 239-298. https://doi.org/10.1146/annurev.pp.31.060180.001323

Clum, H. H. (1926). The effect of transpiration and environmental factors on leaf temperatures II. Light intensity and the relation of transpiration to the thermal death point. American Journal of Botany, 13(4), 217-230. https://doi.org/10.1002/j.1537-2197.1926.tb05879.x

Cohen, D., Bogeat-Triboulot, M. B., Tisserant, E., Balzergue, S., Martin-Magniette, M. L., Lelandais, G., … Hummel, I. (2010). Comparative transcriptomics of drought responses in Populus: A meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes. BMC Genomics, 11, 21.

Cohen, D., Bogeat-Triboulot, M. B., Vialet-Chabrand, S., Merret, R., Courty, P. E., Moretti, S., … Hummel, I. (2013). Developmental and environmental regulation of aquaporin gene expression across Populus species: Divergence or redundancy? PLoS ONE, 8(2), 12.

Coopman, R. E., Jara, J. C., Bravo, L. A., Sáez, K. L., Mella, G. R., & Escobar, R. (2008). Changes in morpho-physiological attributes of Eucalyptus globulus plants in response to different drought hardening treatments. Electronic Journal of Biotechnology, 11(2), 30-39.

Cowan, I. R., & Farquhar, G. D. (1977). Stomatal function in relation to leaf metabolism and environment. Symposia of the Society for Experimental Biology, 31, 471-505.

Dai, A. (2012). Increasing drought under global warming in observations and models. Nature Climate Change, 3, 52.

Damsteegt, E. L., McHugh, N., & Lokman, P. M. (2016). Storage by lyophilization-Resulting RNA quality is tissue dependent. Analytical Biochemistry, 511, 92-96.

Davies, W. J., & Zhang, J. H. (1991). Root signals and the regulation of growth and development of plants in drying soil. Annual Review of Plant Physiology and Plant Molecular Biology, 42, 55-76. https://doi.org/10.1146/annurev.pp.42.060191.000415

de Dios, V. R. (2017). Circadian regulation and diurnal variation in gas exchange. Plant Physiology, 175(1), 3-4. https://doi.org/10.1104/pp.17.00984

Dodd, I. C. (2005). Root-to-shoot signalling: Assessing the roles of ‘up’ in the up and down world of long-distance signalling in planta. Plant and Soil, 274(1-2), 251-270. https://doi.org/10.1007/s11104-004-0966-0

Dumont, J., Cohen, D., Gerard, J., Jolivet, Y., Dizengremel, P., & Le Thiec, D. (2014). Distinct responses to ozone of abaxial and adaxial stomata in three Euramerican poplar genotypes. Plant, Cell and Environment, 37(9), 2064-2076. https://doi.org/10.1111/pce.12293

Durand, M., Brendel, O., Buré, C., & Le Thiec, D. (2019). Altered stomatal dynamics induced by changes in irradiance and vapour-pressure deficit under drought: Impact on the whole plant transpiration efficiency of poplar genotypes. New Phytologist, 222, 1789-1802. https://doi.org/10.1111/nph.15710

Ewert, M. S., Jr, W. H. O., Zhang, S., Aghoram, K., & Riddle, K. A. (2000). Accumulation of an apoplastic solute in the guard-cell wall is sufficient to exert a significant effect on transpiration in Vicia faba leaflets. Plant, Cell & Environment, 23(2), 195-203. https://doi.org/10.1046/j.1365-3040.2000.00539.x

García-Baldenegro, C. V., Vargas-Arispuro, I., Islas-Osuna, M., Rivera-Domínguez, M., Aispuro-Hernández, E., & Martínez-Téllez, M. Á. (2015). Total RNA quality of lyophilized and cryopreserved dormant grapevine buds. Electronic Journal of Biotechnology, 18(2), 134-137. https://doi.org/10.1016/j.ejbt.2015.01.002

Geiger, D., Scherzer, S., Mumm, P., Marten, I., Ache, P., Matschi, S., … Hedrich, R. (2010). Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proceedings of the National Academy of Sciences of the United States of America, 107(17), 8023-8028. https://doi.org/10.1073/pnas.0912030107

Geiger, D., Scherzer, S., Mumm, P., Stange, A., Marten, I., Bauer, H., … Hedrich, R. (2009). Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proceedings of the National Academy of Sciences, 106(50), 21425-21430. https://doi.org/10.1073/pnas.0912021106

Giovannelli, A., Deslauriers, A., Fragnelli, G., Scaletti, L., Castro, G., Rossi, S., & Crivellaro, A. (2007). Evaluation of drought response of two poplar clones (Populus×canadensis Mönch ‘I-214’ and P. deltoides Marsh. ‘Dvina’) through high resolution analysis of stem growth. Journal of Experimental Botany, 58(10), 2673-2683. https://doi.org/10.1093/jxb/erm117

Grabov, A., & Blatt, M. R. (1999). A steep dependence of inward-rectifying potassium channels on cytosolic free calcium concentration increase evoked by hyperpolarization in guard cells. Plant Physiology, 119(1), 277-288. https://doi.org/10.1104/pp.119.1.277

Granot, D., & Kelly, G. (2019). Evolution of guard-cell theories: The story of sugars. Trends in Plant Science, 24(6), 507-518. https://doi.org/10.1016/j.tplants.2019.02.009

Grondin, A., Rodrigues, O., Verdoucq, L., Merlot, S., Leonhardt, N., & Maurel, C. (2015). Aquaporins contribute to ABA-triggered stomatal closure through OST1-mediated phosphorylation. The Plant Cell, 27(7), 1945-1954. https://doi.org/10.1105/tpc.15.00421

Guo, X. Y., Zhang, X. S., & Huang, Z. Y. (2010). Drought tolerance in three hybrid poplar clones submitted to different watering regimes. Journal of Plant Ecology, 3(2), 79-87. https://doi.org/10.1093/jpe/rtq007

Gutierrez, L., Mauriat, M., Guenin, S., Pelloux, J., Lefebvre, J. F., Louvet, R., … Van Wuytswinkel, O. (2008). The lack of a systematic validation of reference genes: A serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnology Journal, 6(6), 609-618. https://doi.org/10.1111/j.1467-7652.2008.00346.x

Hachez, C., Heinen, R. B., Draye, X., & Chaumont, F. (2008). The expression pattern of plasma membrane aquaporins in maize leaf highlights their role in hydraulic regulation. Plant Molecular Biology, 68(4-5), 337-353. https://doi.org/10.1007/s11103-008-9373-x

Hassidim, M., Dakhiya, Y., Turjeman, A., Hussien, D., Shor, E., Anidjar, A., … Green, R. M. (2017). CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and the circadian control of stomatal aperture. Plant Physiology, 175(4), 1864-1877. https://doi.org/10.1104/pp.17.01214

Heinen, R. B., Bienert, G. P., Cohen, D., Chevalier, A. S., Uehlein, N., Hachez, C., … Chaumont, F. (2014). Expression and characterization of plasma membrane aquaporins in stomatal complexes of Zea mays. Plant Molecular Biology, 86(3), 335-350. https://doi.org/10.1007/s11103-014-0232-7

Henzler, T., Waterhouse, R. N., Smyth, A. J., Carvajal, M., Cooke, D. T., Schaffner, A. R., … Clarkson, D. T. (1999). Diurnal variations in hydraulic conductivity and root pressure can be correlated with the expression of putative aquaporins in the roots of Lotus japonicus. Planta, 210(1), 50-60. https://doi.org/10.1007/s004250050653

Huang, A. X., She, X. P., Zhang, Y. Y., & Zhao, J. L. (2013). Cytosolic acidification precedes nitric oxide removal during inhibition of ABA-induced stomatal closure by fusicoccin. Russian Journal of Plant Physiology, 60(1), 60-68. https://doi.org/10.1134/S1021443712060076

Huang, D., Wu, W., Abrams, S. R., & Cutler, A. J. (2008). The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. Journal of Experimental Botany, 59(11), 2991-3007. https://doi.org/10.1093/jxb/ern155

Intergovernmental Panel on Climate Change (2014). Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva, Switzerland: Cambridge University Press. https://doi.org/10.1017/CBO9781107415416

Irving, H. R., Gehring, C. A., & Parish, R. W. (1992). Changes in cytosolic pH and calcium of guard-cells precede stomatal movements. Proceedings of the National Academy of Sciences of the United States of America, 89(5), 1790-1794. https://doi.org/10.1073/pnas.89.5.1790

Jaiprakash, M. R., Pillai, B., Venkatesh, P., Subramanian, N., Sinkar, V. P., & Sadhale, P. P. (2003). RNA isolation from high-phenolic freeze-dried tea (Camellia sinensis) leaves. Plant Molecular Biology Reporter, 21(4), 465-466. https://doi.org/10.1007/BF02772599

Jansson, S., & Douglas, C. J. (2007). Populus: A model system for plant biology. Annual Review of Plant Biology, 58, 435-458. https://doi.org/10.1146/annurev.arplant.58.032806.103956

Jezek, M., & Blatt, M. R. (2017). The membrane transport system of the guard cell and its integration for stomatal dynamics. Plant Physiology, 174(2), 487-519. https://doi.org/10.1104/pp.16.01949

Kanemasu, E. T., & Tanner, C. B. (1969). Stomatal diffusion resistance of snap beans I. Influence of leaf-water potential. Plant Physiology, 44(11), 1547-1552. https://doi.org/10.1104/pp.44.11.1547

Kang, Y. U. N., Outlaw, W. H., Andersen, P. C., & Fiore, G. B. (2007). Guard-cell apoplastic sucrose concentration ? a link between leaf photosynthesis and stomatal aperture size in the apoplastic phloem loader Vicia faba L. Plant, Cell & Environment, 30(5), 551-558. https://doi.org/10.1111/j.1365-3040.2007.01635.x

Kassam, A. H. (1973). Influence of light and water deficit upon diffusive resistance of leaves of Vicia faba L. New Phytologist, 72(3), 557-570. https://doi.org/10.1111/j.1469-8137.1973.tb04407.x

Kelly, G., Moshelion, M., David-Schwartz, R., Halperin, O., Wallach, R., Attia, Z., … Granot, D. (2013). Hexokinase mediates stomatal closure. The Plant Journal, 75(6), 977-988. https://doi.org/10.1111/tpj.12258

Kottapalli, J., David-Schwartz, R., Khamaisi, B., Brandsma, D., Lugassi, N., Egbaria, A., … Granot, D. (2018). Sucrose-induced stomatal closure is conserved across evolution. PLoS ONE, 13(10), e0205359. https://doi.org/10.1371/journal.pone.0205359

Lager, I., Andreasson, O., Dunbar, T. L., Andreasson, E., Escobar, M. A., & Rasmusson, A. G. (2010). Changes in external pH rapidly alter plant gene expression and modulate auxin and elicitor responses. Plant, Cell and Environment, 33(9), 1513-1528.

Langer, K., Levchenko, V., Fromm, J., Geiger, D., Steinmeyer, R., Lautner, S., … Hedrich, R. (2004). The poplar K+ channel KPT1 is associated with K+ uptake during stomatal opening and bud development. The Plant Journal, 37(6), 828-838. https://doi.org/10.1111/j.0960-7412.2003.02008.x

Leonhardt, N., Kwak, J. M., Robert, N., Waner, D., Leonhardt, G., & Schroeder, J. I. (2004). Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell, 16(3), 596-615. https://doi.org/10.1105/tpc.019000

Lopez, D., Venisse, J. S., Fumanal, B., Chaumont, F., Guillot, E., Daniels, M. J., … Gousset-Dupont, A. (2013). Aquaporins and leaf hydraulics: poplar sheds new light. Plant and Cell Physiology, 54(12), 1963-1975. https://doi.org/10.1093/pcp/pct135

Lopez, M., Bousser, A. S., Sissoeff, I., Gaspar, M., Lachaise, B., Hoarau, J., & Mahe, A. (2003). Diurnal regulation of water transport and aquaporin gene expression in maize roots: Contribution of PIP2 proteins. Plant and Cell Physiology, 44(12), 1384-1395. https://doi.org/10.1093/pcp/pcg168

Lu, Z., Quiñones, M. A., & Zeiger, E. (1993). Abaxial and adaxial stomata from Pima cotton (Gossypium barbadense L.) differ in their pigment content and sensitivity to light quality. Plant, Cell & Environment, 16(7), 851-858. https://doi.org/10.1111/j.1365-3040.1993.tb00507.x

Lv, S., Zhang, Y., Li, C., Liu, Z., Yang, N., Pan, L., … Wang, G. (2018). Strigolactone-triggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acid-independent manner. New Phytologist, 217(1), 290-304. https://doi.org/10.1111/nph.14813

Ma, Y., & Niu, J. (2017). The role of phytosphingosine-1-phosphate (Phyto-S1P) and its relationships with cytosolic pH and hydrogen peroxide (H2O2) during stomatal closure by darkness in broad bean. South African Journal of Botany, 108, 237-242. https://doi.org/10.1016/j.sajb.2016.11.002

Marron, N., Dreyer, E., Boudouresque, E., Delay, D., Petit, J. M., Delmotte, F. M., & Brignolas, F. (2003). Impact of successive drought and re-watering cycles on growth and specific leaf area of two Populus × canadensis (Moench) clones, ‘Dorskamp’ and ‘Luisa_Avanzo’. Tree Physiology, 23(18), 1225-1235. https://doi.org/10.1093/treephys/23.18.1225

Maurel, C., Verdoucq, L., & Rodrigues, O. (2016). Aquaporins and plant transpiration. Plant, Cell and Environment, 39(11), 2580-2587. https://doi.org/10.1111/pce.12814

Merilo, E., Laanemets, K., Hu, H., Xue, S., Jakobson, L., Tulva, I., … Kollist, H. (2013). PYR/RCAR receptors contribute to ozone, reduced air humidity, darkness, and CO2-induced stomatal regulation. Plant Physiology, 162(3), 1652-1668. https://doi.org/10.1104/pp.113.220608

Merilo, E., Yarmolinsky, D., Jalakas, P., Parik, H., Tulva, I., Rasulov, B., … Kollist, H. (2018). Stomatal VPD response: There is more to the story than ABA. Plant Physiology, 176(1), 851-864. https://doi.org/10.1104/pp.17.00912

Mestdagh, P., Van Vlierberghe, P., De Weer, A., Muth, D., Westermann, F., Speleman, F., & Vandesompele, J. (2009). A novel and universal method for microRNA RT-qPCR data normalization. Genome Biology, 10(6), 10.

Monclus, R., Dreyer, E., Villar, M., Delmotte, F. M., Delay, D., Petit, J. M., … Brignolas, F. (2006). Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoides × Populus nigra. New Phytologist, 169(4), 765-777. https://doi.org/10.1111/j.1469-8137.2005.01630.x

Mott, K. A. (2007). Leaf hydraulic conductivity and stomatal responses to humidity in amphistomatous leaves. Plant, Cell and Environment, 30(11), 1444-1449. https://doi.org/10.1111/j.1365-3040.2007.01720.x

Mott, K. A., Cardon, Z. G., & Berry, J. A. (1993). Asymmetric patchy stomatal closure for the 2 surfaces of Xanthium strumarium leaves at low humidity. Plant, Cell and Environment, 16(1), 25-34. https://doi.org/10.1111/j.1365-3040.1993.tb00841.x

Muller, E., & Lambs, L. (2009). Daily variations of water use with vapor pressure deficit in a plantation of I214 poplars. Water, 1(1), 32-42. https://doi.org/10.3390/w1010032

Nourbakhsh-Rey, M., & Libault, M. (2016). Decipher the molecular response of plant single cell types to environmental stresses. BioMed Research International, 2016, 1-8. https://doi.org/10.1155/2016/4182071

Novakova, M., Motyka, V., Dobrev, P. I., Malbeck, J., Gaudinova, A., & Vankova, R. (2005). Diurnal variation of cytokinin, auxin and abscisic acid levels in tobacco leaves. Journal of Experimental Botany, 56(421), 2877-2883. https://doi.org/10.1093/jxb/eri282

Pallardy, S. G., & Kozlowski, T. T. (1979). Stomatal response of populus clones to light intensity and vapor pressure deficit. Plant Physiology, 64(1), 112-114. https://doi.org/10.1104/pp.64.1.112

Park, S.-Y., Fung, P., Nishimura, N., Jensen, D. R., Fujii, H., Zhao, Y., … Cutler, S. R. (2009). Abscisic acid inhibits PP2Cs via the PYR/PYL family of ABA-binding START proteins. Science (New York, N.Y.), 324(5930), 1068-1071.

Possen, B. J. H. M., Oksanen, E., Rousi, M., Ruhanen, H., Ahonen, V., Tervahauta, A., … Vapaavuori, E. (2011). Adaptability of birch (Betula pendula Roth) and aspen (Populus tremula L.) genotypes to different soil moisture conditions. Forest Ecology and Management, 262(8), 1387-1399. https://doi.org/10.1016/j.foreco.2011.06.035

Pouchou, J.-L., & Pichoir, F. (1991). Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In K. F. J. Heinrich, & D. E. Newbury (Eds.), Electron Probe Quantitation (pp. 31-75). Boston, MA: Springer US.

Raschke, K., & Schnabl, H. (1978). Availability of chloride affects balance between potassium-chloride and potassium malate in guard cells of Vicia faba L. Plant Physiology, 62(1), 84-87. https://doi.org/10.1104/pp.62.1.84

Richardson, F., Brodribb, T. J., & Jordan, G. J. (2017). Amphistomatic leaf surfaces independently regulate gas exchange in response to variations in evaporative demand. Tree Physiology, 37(7), 869-878. https://doi.org/10.1093/treephys/tpx073

Rodriguez-Dominguez, C. M., Buckley, T. N., Egea, G., de Cires, A., Hernandez-Santana, V., Martorell, S., & Diaz-Espejo, A. (2016). Most stomatal closure in woody species under moderate drought can be explained by stomatal responses to leaf turgor. Plant, Cell and Environment, 39(9), 2014-2026. https://doi.org/10.1111/pce.12774

Santelia, D., & Lawson, T. (2016). Rethinking guard cell metabolism. Plant Physiology, 172(3), 1371-1392.

Sato, A., Sato, Y., Fukao, Y., Fujiwara, M., Umezawa, T., Shinozaki, K., … Uozumi, N. (2009). Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochemical Journal, 424, 439-448. https://doi.org/10.1042/BJ20091221

Schroeder, J. I., & Hagiwara, S. (1989). Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells. Nature, 338, 427-430. https://doi.org/10.1038/338427a0

Schroeder, J. I., & Hedrich, R. (1989). Involvement of ion channels and active transport in osmoregulation and signaling of higher plant cells. Trends in Biochemical Sciences, 14(5), 187-192. https://doi.org/10.1016/0968-0004(89)90272-7

Schroeder, J. I., Raschke, K., & Neher, E. (1987). Voltage dependence of K+ channels in guard-cell protoplasts. Proceedings of the National Academy of Sciences, 84(12), 4108-4112. https://doi.org/10.1073/pnas.84.12.4108

Seung, D., Risopatron, J. P. M., Jones, B. J., & Marc, J. (2012). Circadian clock-dependent gating in ABA signalling networks. Protoplasma, 249(3), 445-457. https://doi.org/10.1007/s00709-011-0304-3

Sheriff, D. W. (1979). Water-vapor and heat-transfer in leaves. Annals of Botany, 43(2), 157-171. https://doi.org/10.1093/oxfordjournals.aob.a085620

Shimazaki, K.-i., Doi, M., Assmann, S. M., & Kinoshita, T. (2007). Light regulation of stomatal movement. Annual Review of Plant Biology, 58, 219-247.

Sommer, A., Geist, B., Da Ines, O., Gehwolf, R., Schäffner, A. R., & Obermeyer, G. (2008). Ectopic expression of Arabidopsis thaliana plasma membrane intrinsic protein 2 aquaporins in lily pollen increases the plasma membrane water permeability of grain but not of tube protoplasts. New Phytologist, 180(4), 787-797. https://doi.org/10.1111/j.1469-8137.2008.02607.x

Sperry, J. S., Hacke, U. G., Oren, R., & Comstock, J. P. (2002). Water deficits and hydraulic limits to leaf water supply. Plant, Cell and Environment, 25(2), 251-263. https://doi.org/10.1046/j.0016-8025.2001.00799.x

Talbott, L. D., & Zeiger, E. (1996). Central roles for potassium and sucrose in guard-cell osmoregulation. Plant Physiology, 111(4), 1051-1057. https://doi.org/10.1104/pp.111.4.1051

Tardieu, F., & Simonneau, T. (1998). Variability among species of stomatal control under fluctuating soil water status and evaporative demand: Modelling isohydric and anisohydric behaviours. Journal of Experimental Botany, 49, 419-432. https://doi.org/10.1093/jxb/49.Special_Issue.419

Touma, D., Ashfaq, M., Nayak, M. A., Kao, S.-C., & Diffenbaugh, N. S. (2015). A multi-model and multi-index evaluation of drought characteristics in the 21st century. Journal of Hydrology, 526, 196-207. https://doi.org/10.1016/j.jhydrol.2014.12.011

Tschaplinski, T. J., & Blake, T. J. (1989). Water relations, photosynthetic capacity, and root shoot partitioning of photosynthates as determinants of productivity in hybrid poplar. Canadian Journal of Botany-Revue Canadienne De Botanique, 67(6), 1689-1697.

Tuskan, G. A., DiFazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., … Rokhsar, D. (2006). The genome of black cottonwood, Populus trichocarpa (Torr. and Gray). Science, 313(5793), 1596-1604. https://doi.org/10.1126/science.1128691

Urban, J., Ingwers, M., McGuire, M. A., & Teskey, R. O. (2017). Stomatal conductance increases with rising temperature. Plant Signaling & Behavior, 12(8), 3.

Vandeleur, R. K., Mayo, G., Shelden, M. C., Gilliham, M., Kaiser, B. N., & Tyerman, S. D. (2009). The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiology, 149(1), 445-460. https://doi.org/10.1104/pp.108.128645

Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., & Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3(7), research0034.1. https://doi.org/10.1186/gb-2002-3-7-research0034

Viger, M., Smith, H. K., Cohen, D., Dewoody, J., Trewin, H., Steenackers, M., … Taylor, G. (2016). Adaptive mechanisms and genomic plasticity for drought tolerance identified in European black poplar (Populus nigra L.). Tree Physiology, 36(7), 909-928. https://doi.org/10.1093/treephys/tpw017

Wang, X.-Q., Wu, W.-H., & Assmann, S. M. (1998). Differential responses of abaxial and adaxial guard cells of broad bean to abscisic acid and calcium. Plant Physiology, 118(4), 1421-1429. https://doi.org/10.1104/pp.118.4.1421

Wilkins, O., Waldron, L., Nahal, H., Provart, N. J., & Campbell, M. M. (2009). Genotype and time of day shape the Populus drought response. Plant Journal, 60(4), 703-715. https://doi.org/10.1111/j.1365-313X.2009.03993.x

Yakir, E., Hassidim, M., Melamed-Book, N., Hilman, D., Kron, I., & Green, R. M. (2011). Cell autonomous and cell-type specific circadian rhythms in Arabidopsis. Plant Journal, 68(3), 520-531. https://doi.org/10.1111/j.1365-313X.2011.04707.x

Yoshida, R., Umezawa, T., Mizoguchi, T., Takahashi, S., Takahashi, F., & Shinozaki, K. (2006). The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. Journal of Biological Chemistry, 281(8), 5310-5318. https://doi.org/10.1074/jbc.M509820200

Zhang, X., Dong, F. C., Gao, J. F., & Song, C. P. (2001). Hydrogen peroxide-induced changes in intracellular pH of guard cells precede stomatal closure. Cell Research, 11(1), 37-43. https://doi.org/10.1038/sj.cr.7290064

Zhang, X. L., Jiang, L., Xin, Q., Liu, Y., Tan, J. X., & Chen, Z. Z. (2015). Structural basis and functions of abscisic acid receptors PYLs. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.00088

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...