Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere

. 2019 ; 10 () : 1401-1411. [epub] 20190715

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31431852

This study deals with the preparation and characterization of metallic nanoinclusions on the surface of semiconducting Bi2Se3 that could be used for an enhancement of the efficiency of thermoelectric materials. We used Au forming a 1D alloy through diffusion (point nanoinclusion) and Mo forming thermodynamically stable layered MoSe2 nanosheets through the reaction with the Bi2Se3. The Schottky barrier formed by the 1D and 2D nanoinclusions was characterized by means of atomic force microscopy (AFM). We used Kelvin probe force microscopy (KPFM) in ambient atmosphere at the nanoscale and compared the results to those of ultraviolet photoelectron spectroscopy (UPS) in UHV at the macroscale. The existence of the Schottky barrier was demonstrated at +120 meV for the Mo layer and -80 meV for the Au layer reflecting the formation of MoSe2 and Au/Bi2Se3 alloy, respectively. The results of both methods (KPFM and UPS) were in good agreement. We revealed that long-time exposure (tens of seconds) to the electrical field leads to deep oxidation and the formation of perturbations greater than 1 µm in height, which hinder the I-V measurements.

Zobrazit více v PubMed

Slack G A. CRC Handbook of Thermoelectrics. Boca Raton, FL, U.S.A.: CRC Press; 1995. p. 407.

Hicks L D, Dresselhaus M S. Phys Rev B. 1993;47:12727–12731. doi: 10.1103/physrevb.47.12727. PubMed DOI

Liu W, Yan X, Chen G, Ren Z. Nano Energy. 2012;1(1):42–56. doi: 10.1016/j.nanoen.2011.10.001. DOI

Li H, Tang X, Zhang Q, Uher C. Appl Phys Lett. 2009;94(10):102114. doi: 10.1063/1.3099804. DOI

Han M-K, Ahn K, Kim H, Rhyee J-S, Kim S-J. J Mater Chem. 2011;21(30):11365–11370. doi: 10.1039/c1jm10163c. DOI

Liu D-W, Li J-F, Chen C, Zhang B-P. J Electron Mater. 2011;40(5):992–998. doi: 10.1007/s11664-010-1476-x. DOI

Faleev S V, Léonard F. Phys Rev B. 2008;77(21):214304–214312. doi: 10.1103/physrevb.77.214304. DOI

Zebarjadi M, Esfarjani K, Shakouri A, Bahk J H, Bian Z X, Zeng G, Bowers J, Lu H, Zide J, Gossard A. Appl Phys Lett. 2009;94:202105. doi: 10.1063/1.3132057. DOI

Narducci D, Selezneva E, Cerofolini G, Frabboni S, Ottaviani G. J Solid State Chem. 2012;193:19–25. doi: 10.1016/j.jssc.2012.03.032. DOI

Kulbachinskii V A, Kytin V G, Popov M Y, Buga S G, Stepanov P B, Blank V D. J Solid State Chem. 2012;193:64–70. doi: 10.1016/j.jssc.2012.03.065. DOI

Popov M, Buga S, Vysikaylo P, Stepanov P, Skok V, Medvedev V, Tatyanin E, Denisov V, Kirichenko A, Aksenenkov V, et al. Phys Status Solidi A. 2011;208:2783–2789. doi: 10.1002/pssa.201127075. DOI

Park D-H, Kim M-Y, Oh T-S. Curr Appl Phys. 2011;11(4):S41–S45. doi: 10.1016/j.cap.2011.07.007. DOI

Li F, Huang X, Sun Z, Ding J, Jiang J, Jiang W, Chen L. J Alloys Compd. 2011;509(14):4769–4773. doi: 10.1016/j.jallcom.2011.01.155. DOI

Li J-F, Liu J. Phys Status Solidi A. 2006;203(15):3768–3773. doi: 10.1002/pssa.200622011. DOI

Xiong Z, Chen X, Huang X, Bai S, Chen L. Acta Mater. 2010;58(11):3995–4002. doi: 10.1016/j.actamat.2010.03.025. DOI

Dou Y C, Qin X Y, Li D, Li L L, Zou T H, Wang Q Q. J Appl Phys. 2013;114(4):044906. doi: 10.1063/1.4817074. DOI

Zou T H, Qin X Y, Li D, Ren B J, Sun G L, Dou Y C, Li Y Y, Li L L, Zhang J, Xin H X. J Appl Phys. 2014;115(5):053710. doi: 10.1063/1.4864220. DOI

Ko D-K, Kang Y, Murray C B. Nano Lett. 2011;11(7):2841–2844. doi: 10.1021/nl2012246. PubMed DOI

Agarwal K, Kaushik V, Varandani D, Dhar A, Mehta B R. J Alloys Compd. 2016;681:394–401. doi: 10.1016/j.jallcom.2016.04.161. DOI

Agarwal K, Mehta B R. J Appl Phys. 2014;116(8):083518. doi: 10.1063/1.4894145. DOI

Singh B, Mehta B R, Varandani D, Govind, Narita A, Feng X, Müllen K. J Appl Phys. 2013;113(20):203706. doi: 10.1063/1.4807411. DOI

Miwa K, Salleh F, Ikeda H. Makara J Technol. 2013;17:17–20. doi: 10.7454/mst.v17i1.1922. DOI

Muñoz-Rojo M, Caballero-Calero O, Martín-González M. Appl Phys Lett. 2013;103(18):183905. doi: 10.1063/1.4826684. DOI

Olaya D, Hurtado-Morales M, Gómez D, Castañeda-Uribe O A, Juang Z-Y, Hernández Y. 2D Mater. 2017;5(1):011004. doi: 10.1088/2053-1583/aa90d8. DOI

Durcan C A, Balsano R, LaBella V P. J Appl Phys. 2014;116(2):023705. doi: 10.1063/1.4889851. DOI

Vanis J, Zelinka J, Zeipl R, Jelinek M, Kocourek T, Remsa J, Navratil J. J Electron Mater. 2016;45:1734–1739. doi: 10.1007/s11664-015-4193-7. DOI

Klimovskikh I I, Sostina D, Petukhov A, Rybkin A G, Eremeev S V, Chulkov E V, Tereshchenko O E, Kokh K A, Shikin A M. Sci Rep. 2017;7(1):45797. doi: 10.1038/srep45797. PubMed DOI PMC

Yamasaka S, Nakamura Y, Ueda T, Takeuchi S, Sakai A. Sci Rep. 2015;5(1):14490. doi: 10.1038/srep14490. PubMed DOI PMC

Bala M, Gupta S, Tripathi T S, Varma S, Tripathi S K, Asokan K, Avasthi D K. RSC Adv. 2015;5:25887–25895. doi: 10.1039/c5ra01000d. DOI

Knotek P, Chanova E, Rypacek F. Mater Sci Eng, C. 2013;33:1963–1968. doi: 10.1016/j.msec.2013.01.006. PubMed DOI

Cermak P, Ruleova P, Holy V, Prokleska J, Kucek V, Palka K, Benes L, Drasar C. J Solid State Chem. 2018;258:768–775. doi: 10.1016/j.jssc.2017.12.009. DOI

Knotek P, Tichý L. Thin Solid Films. 2009;517:1837–1840. doi: 10.1016/j.tsf.2008.09.041. DOI

Knotek P, Tasseva J, Petkov K, Kincl M, Tichy L. Thin Solid Films. 2009;517(20):5943–5947. doi: 10.1016/j.tsf.2009.04.038. DOI

Das S, Zazpe R, Prikryl J, Knotek P, Krbal M, Sopha H, Podzemna V, Macak J M. Electrochim Acta. 2016;213:452–459. doi: 10.1016/j.electacta.2016.07.135. DOI

Glatzel T, Sadewasser S, Lux-Steiner M C. Appl Surf Sci. 2003;210:84–89. doi: 10.1016/s0169-4332(02)01484-8. DOI

Melitz W, Shen J, Kummel A C, Lee S. Surf Sci Rep. 2011;66:1–27. doi: 10.1016/j.surfrep.2010.10.001. DOI

Knotek P, Tichy L, Kutalek P. Thin Solid Films. 2015;594:67–73. doi: 10.1016/j.tsf.2015.09.055. DOI

Knotek P, Vlcek M, Kincl M, Tichy L. Thin Solid Films. 2012;520:5472–5478. doi: 10.1016/j.tsf.2012.03.116. DOI

Axt A, Hermes I M, Bergmann V W, Tausendpfund N, Weber S A L. Beilstein J Nanotechnol. 2018;9:1809–1819. doi: 10.3762/bjnano.9.172. PubMed DOI PMC

Sadewasser S, Nicoara N, Solares S D. Beilstein J Nanotechnol. 2018;9:1272–1281. doi: 10.3762/bjnano.9.119. PubMed DOI PMC

Rezek B, Stehlik S. Chapter 10 - Surface potential of nanodiamonds investigated by KPFM. In: Arnault J-C, editor. Nanodiamonds. Amsterdam, Netherlands: Elsevier; 2017. pp. 273–300. DOI

Watanabe T, Fujihira M. Ultramicroscopy. 2009;109:1035–1039. doi: 10.1016/j.ultramic.2009.03.047. PubMed DOI

Zeng T-W, Hsu F-C, Tu Y-C, Lin T-H, Su W-F. Chem Phys Lett. 2009;479:105–108. doi: 10.1016/j.cplett.2009.07.104. DOI

Yamauchi T, Tabuchi M, Nakamura A. Appl Phys Lett. 2004;84:3834–3836. doi: 10.1063/1.1745110. DOI

Sasahara A, Pang C L, Onishi H. J Phys Chem B. 2006;110:17584–17588. doi: 10.1021/jp063665h. PubMed DOI

Sasahara A, Hiehata K, Onishi H. Catal Surv Asia. 2009;13:9–15. doi: 10.1007/s10563-009-9062-z. DOI

Lide D R. Handbook of Chemistry and Physics. 84th ed. Boca Raton, FL, U.S.A.: CRC Press; 2003.

Nanomaterials: Synthesis, Properties and Applications. Bristol, United Kingdom: J. W. Arrowsmith, Ltd.; 1996.

Lee H, Keun Lee Y, Nghia Van T, Young Park J. Appl Phys Lett. 2013;103(17):173103. doi: 10.1063/1.4826140. DOI

Tedesco J L, Rowe J E, Nemanich R J. J Appl Phys. 2009;105(8):083721. doi: 10.1063/1.3100212. DOI

Avouris P, Martel R, Hertel T, Sandstrom R. Appl Phys A: Mater Sci Process. 1998;66:S659–S667. doi: 10.1007/s003390051218. DOI

Tello M, García R. Appl Phys Lett. 2001;79(3):424–426. doi: 10.1063/1.1385582. DOI

Irmer B, Kehrle M, Lorenz H, Kotthaus J P. Appl Phys Lett. 1997;71:1733–1735. doi: 10.1063/1.120019. DOI

Fang T-H, Chen K-J. Mater Trans. 2007;48(3):471–475. doi: 10.2320/matertrans.48.471. DOI

Shingubara S, Murakami Y, Morimoto K, Takahagi T. Surf Sci. 2003;532–535:317–323. doi: 10.1016/s0039-6028(03)00433-3. DOI

Chuang M-C, Chien H-M, Chain Y-H, Chi G-C, Lee S-W, Woon W Y. Carbon. 2013;54:336–342. doi: 10.1016/j.carbon.2012.11.045. DOI

Baumgärtel T, von Borczyskowski C, Graaf H. Beilstein J Nanotechnol. 2013;4:218–226. doi: 10.3762/bjnano.4.22. PubMed DOI PMC

Leontie L, Caraman M, Alexe M, Harnagea C. Surf Sci. 2002;507-510:480–485. doi: 10.1016/s0039-6028(02)01289-x. DOI

Zhong G, Wang Y, Dai Z, Wang J, Zeng Z. Phys Status Solidi B. 2009;246(1):97–101. doi: 10.1002/pssb.200844271. DOI

Torruella P, Coll C, Martín G, López-Conesa L, Vila M, Díaz-Guerra C, Varela M, Ruiz-González M L, Piqueras J, Peiró F, et al. J Phys Chem C. 2017;121(44):24809–24815. doi: 10.1021/acs.jpcc.7b06310. DOI

Lyutakov O, Huttel I, Siegel J, Švorčík V. Appl Phys Lett. 2009;95(17):173103. doi: 10.1063/1.3254210. DOI

Irfan I, James Turinske A, Bao Z, Gao Y. Appl Phys Lett. 2012;101(9):093305. doi: 10.1063/1.4748978. DOI

Keszler D A, Wager J F. Novel Materials Development for Polycrystalline Thin-Film Solar Cells: Final Subcontract Report, 26 July 2004--15 June 2008. Office of Scientific and Technical Information (OSTI); 2008. pp. 1–16. DOI

Balakrishnan M, Kozicki M N, Poweleit C D, Bhagat S, Alford T L, Mitkova M. J Non-Cryst Solids. 2007;353:1454–1459. doi: 10.1016/j.jnoncrysol.2006.09.071. DOI

Adam J-L, Zhang X, editors. Amsterdam, Netherlands: Elsevier; 2014. ((Woodhead Publishing Series in Electronic and Optical Materials)).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...