Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31431852
PubMed Central
PMC6664417
DOI
10.3762/bjnano.10.138
Knihovny.cz E-zdroje
- Klíčová slova
- Kelvin probe atomic force microscope, Schottky barrier, nanoinclusion, thermoelectric materials, work function,
- Publikační typ
- časopisecké články MeSH
This study deals with the preparation and characterization of metallic nanoinclusions on the surface of semiconducting Bi2Se3 that could be used for an enhancement of the efficiency of thermoelectric materials. We used Au forming a 1D alloy through diffusion (point nanoinclusion) and Mo forming thermodynamically stable layered MoSe2 nanosheets through the reaction with the Bi2Se3. The Schottky barrier formed by the 1D and 2D nanoinclusions was characterized by means of atomic force microscopy (AFM). We used Kelvin probe force microscopy (KPFM) in ambient atmosphere at the nanoscale and compared the results to those of ultraviolet photoelectron spectroscopy (UPS) in UHV at the macroscale. The existence of the Schottky barrier was demonstrated at +120 meV for the Mo layer and -80 meV for the Au layer reflecting the formation of MoSe2 and Au/Bi2Se3 alloy, respectively. The results of both methods (KPFM and UPS) were in good agreement. We revealed that long-time exposure (tens of seconds) to the electrical field leads to deep oxidation and the formation of perturbations greater than 1 µm in height, which hinder the I-V measurements.
Zobrazit více v PubMed
Slack G A. CRC Handbook of Thermoelectrics. Boca Raton, FL, U.S.A.: CRC Press; 1995. p. 407.
Hicks L D, Dresselhaus M S. Phys Rev B. 1993;47:12727–12731. doi: 10.1103/physrevb.47.12727. PubMed DOI
Liu W, Yan X, Chen G, Ren Z. Nano Energy. 2012;1(1):42–56. doi: 10.1016/j.nanoen.2011.10.001. DOI
Li H, Tang X, Zhang Q, Uher C. Appl Phys Lett. 2009;94(10):102114. doi: 10.1063/1.3099804. DOI
Han M-K, Ahn K, Kim H, Rhyee J-S, Kim S-J. J Mater Chem. 2011;21(30):11365–11370. doi: 10.1039/c1jm10163c. DOI
Liu D-W, Li J-F, Chen C, Zhang B-P. J Electron Mater. 2011;40(5):992–998. doi: 10.1007/s11664-010-1476-x. DOI
Faleev S V, Léonard F. Phys Rev B. 2008;77(21):214304–214312. doi: 10.1103/physrevb.77.214304. DOI
Zebarjadi M, Esfarjani K, Shakouri A, Bahk J H, Bian Z X, Zeng G, Bowers J, Lu H, Zide J, Gossard A. Appl Phys Lett. 2009;94:202105. doi: 10.1063/1.3132057. DOI
Narducci D, Selezneva E, Cerofolini G, Frabboni S, Ottaviani G. J Solid State Chem. 2012;193:19–25. doi: 10.1016/j.jssc.2012.03.032. DOI
Kulbachinskii V A, Kytin V G, Popov M Y, Buga S G, Stepanov P B, Blank V D. J Solid State Chem. 2012;193:64–70. doi: 10.1016/j.jssc.2012.03.065. DOI
Popov M, Buga S, Vysikaylo P, Stepanov P, Skok V, Medvedev V, Tatyanin E, Denisov V, Kirichenko A, Aksenenkov V, et al. Phys Status Solidi A. 2011;208:2783–2789. doi: 10.1002/pssa.201127075. DOI
Park D-H, Kim M-Y, Oh T-S. Curr Appl Phys. 2011;11(4):S41–S45. doi: 10.1016/j.cap.2011.07.007. DOI
Li F, Huang X, Sun Z, Ding J, Jiang J, Jiang W, Chen L. J Alloys Compd. 2011;509(14):4769–4773. doi: 10.1016/j.jallcom.2011.01.155. DOI
Li J-F, Liu J. Phys Status Solidi A. 2006;203(15):3768–3773. doi: 10.1002/pssa.200622011. DOI
Xiong Z, Chen X, Huang X, Bai S, Chen L. Acta Mater. 2010;58(11):3995–4002. doi: 10.1016/j.actamat.2010.03.025. DOI
Dou Y C, Qin X Y, Li D, Li L L, Zou T H, Wang Q Q. J Appl Phys. 2013;114(4):044906. doi: 10.1063/1.4817074. DOI
Zou T H, Qin X Y, Li D, Ren B J, Sun G L, Dou Y C, Li Y Y, Li L L, Zhang J, Xin H X. J Appl Phys. 2014;115(5):053710. doi: 10.1063/1.4864220. DOI
Ko D-K, Kang Y, Murray C B. Nano Lett. 2011;11(7):2841–2844. doi: 10.1021/nl2012246. PubMed DOI
Agarwal K, Kaushik V, Varandani D, Dhar A, Mehta B R. J Alloys Compd. 2016;681:394–401. doi: 10.1016/j.jallcom.2016.04.161. DOI
Agarwal K, Mehta B R. J Appl Phys. 2014;116(8):083518. doi: 10.1063/1.4894145. DOI
Singh B, Mehta B R, Varandani D, Govind, Narita A, Feng X, Müllen K. J Appl Phys. 2013;113(20):203706. doi: 10.1063/1.4807411. DOI
Miwa K, Salleh F, Ikeda H. Makara J Technol. 2013;17:17–20. doi: 10.7454/mst.v17i1.1922. DOI
Muñoz-Rojo M, Caballero-Calero O, Martín-González M. Appl Phys Lett. 2013;103(18):183905. doi: 10.1063/1.4826684. DOI
Olaya D, Hurtado-Morales M, Gómez D, Castañeda-Uribe O A, Juang Z-Y, Hernández Y. 2D Mater. 2017;5(1):011004. doi: 10.1088/2053-1583/aa90d8. DOI
Durcan C A, Balsano R, LaBella V P. J Appl Phys. 2014;116(2):023705. doi: 10.1063/1.4889851. DOI
Vanis J, Zelinka J, Zeipl R, Jelinek M, Kocourek T, Remsa J, Navratil J. J Electron Mater. 2016;45:1734–1739. doi: 10.1007/s11664-015-4193-7. DOI
Klimovskikh I I, Sostina D, Petukhov A, Rybkin A G, Eremeev S V, Chulkov E V, Tereshchenko O E, Kokh K A, Shikin A M. Sci Rep. 2017;7(1):45797. doi: 10.1038/srep45797. PubMed DOI PMC
Yamasaka S, Nakamura Y, Ueda T, Takeuchi S, Sakai A. Sci Rep. 2015;5(1):14490. doi: 10.1038/srep14490. PubMed DOI PMC
Bala M, Gupta S, Tripathi T S, Varma S, Tripathi S K, Asokan K, Avasthi D K. RSC Adv. 2015;5:25887–25895. doi: 10.1039/c5ra01000d. DOI
Knotek P, Chanova E, Rypacek F. Mater Sci Eng, C. 2013;33:1963–1968. doi: 10.1016/j.msec.2013.01.006. PubMed DOI
Cermak P, Ruleova P, Holy V, Prokleska J, Kucek V, Palka K, Benes L, Drasar C. J Solid State Chem. 2018;258:768–775. doi: 10.1016/j.jssc.2017.12.009. DOI
Knotek P, Tichý L. Thin Solid Films. 2009;517:1837–1840. doi: 10.1016/j.tsf.2008.09.041. DOI
Knotek P, Tasseva J, Petkov K, Kincl M, Tichy L. Thin Solid Films. 2009;517(20):5943–5947. doi: 10.1016/j.tsf.2009.04.038. DOI
Das S, Zazpe R, Prikryl J, Knotek P, Krbal M, Sopha H, Podzemna V, Macak J M. Electrochim Acta. 2016;213:452–459. doi: 10.1016/j.electacta.2016.07.135. DOI
Glatzel T, Sadewasser S, Lux-Steiner M C. Appl Surf Sci. 2003;210:84–89. doi: 10.1016/s0169-4332(02)01484-8. DOI
Melitz W, Shen J, Kummel A C, Lee S. Surf Sci Rep. 2011;66:1–27. doi: 10.1016/j.surfrep.2010.10.001. DOI
Knotek P, Tichy L, Kutalek P. Thin Solid Films. 2015;594:67–73. doi: 10.1016/j.tsf.2015.09.055. DOI
Knotek P, Vlcek M, Kincl M, Tichy L. Thin Solid Films. 2012;520:5472–5478. doi: 10.1016/j.tsf.2012.03.116. DOI
Axt A, Hermes I M, Bergmann V W, Tausendpfund N, Weber S A L. Beilstein J Nanotechnol. 2018;9:1809–1819. doi: 10.3762/bjnano.9.172. PubMed DOI PMC
Sadewasser S, Nicoara N, Solares S D. Beilstein J Nanotechnol. 2018;9:1272–1281. doi: 10.3762/bjnano.9.119. PubMed DOI PMC
Rezek B, Stehlik S. Chapter 10 - Surface potential of nanodiamonds investigated by KPFM. In: Arnault J-C, editor. Nanodiamonds. Amsterdam, Netherlands: Elsevier; 2017. pp. 273–300. DOI
Watanabe T, Fujihira M. Ultramicroscopy. 2009;109:1035–1039. doi: 10.1016/j.ultramic.2009.03.047. PubMed DOI
Zeng T-W, Hsu F-C, Tu Y-C, Lin T-H, Su W-F. Chem Phys Lett. 2009;479:105–108. doi: 10.1016/j.cplett.2009.07.104. DOI
Yamauchi T, Tabuchi M, Nakamura A. Appl Phys Lett. 2004;84:3834–3836. doi: 10.1063/1.1745110. DOI
Sasahara A, Pang C L, Onishi H. J Phys Chem B. 2006;110:17584–17588. doi: 10.1021/jp063665h. PubMed DOI
Sasahara A, Hiehata K, Onishi H. Catal Surv Asia. 2009;13:9–15. doi: 10.1007/s10563-009-9062-z. DOI
Lide D R. Handbook of Chemistry and Physics. 84th ed. Boca Raton, FL, U.S.A.: CRC Press; 2003.
Nanomaterials: Synthesis, Properties and Applications. Bristol, United Kingdom: J. W. Arrowsmith, Ltd.; 1996.
Lee H, Keun Lee Y, Nghia Van T, Young Park J. Appl Phys Lett. 2013;103(17):173103. doi: 10.1063/1.4826140. DOI
Tedesco J L, Rowe J E, Nemanich R J. J Appl Phys. 2009;105(8):083721. doi: 10.1063/1.3100212. DOI
Avouris P, Martel R, Hertel T, Sandstrom R. Appl Phys A: Mater Sci Process. 1998;66:S659–S667. doi: 10.1007/s003390051218. DOI
Tello M, García R. Appl Phys Lett. 2001;79(3):424–426. doi: 10.1063/1.1385582. DOI
Irmer B, Kehrle M, Lorenz H, Kotthaus J P. Appl Phys Lett. 1997;71:1733–1735. doi: 10.1063/1.120019. DOI
Fang T-H, Chen K-J. Mater Trans. 2007;48(3):471–475. doi: 10.2320/matertrans.48.471. DOI
Shingubara S, Murakami Y, Morimoto K, Takahagi T. Surf Sci. 2003;532–535:317–323. doi: 10.1016/s0039-6028(03)00433-3. DOI
Chuang M-C, Chien H-M, Chain Y-H, Chi G-C, Lee S-W, Woon W Y. Carbon. 2013;54:336–342. doi: 10.1016/j.carbon.2012.11.045. DOI
Baumgärtel T, von Borczyskowski C, Graaf H. Beilstein J Nanotechnol. 2013;4:218–226. doi: 10.3762/bjnano.4.22. PubMed DOI PMC
Leontie L, Caraman M, Alexe M, Harnagea C. Surf Sci. 2002;507-510:480–485. doi: 10.1016/s0039-6028(02)01289-x. DOI
Zhong G, Wang Y, Dai Z, Wang J, Zeng Z. Phys Status Solidi B. 2009;246(1):97–101. doi: 10.1002/pssb.200844271. DOI
Torruella P, Coll C, Martín G, López-Conesa L, Vila M, Díaz-Guerra C, Varela M, Ruiz-González M L, Piqueras J, Peiró F, et al. J Phys Chem C. 2017;121(44):24809–24815. doi: 10.1021/acs.jpcc.7b06310. DOI
Lyutakov O, Huttel I, Siegel J, Švorčík V. Appl Phys Lett. 2009;95(17):173103. doi: 10.1063/1.3254210. DOI
Irfan I, James Turinske A, Bao Z, Gao Y. Appl Phys Lett. 2012;101(9):093305. doi: 10.1063/1.4748978. DOI
Keszler D A, Wager J F. Novel Materials Development for Polycrystalline Thin-Film Solar Cells: Final Subcontract Report, 26 July 2004--15 June 2008. Office of Scientific and Technical Information (OSTI); 2008. pp. 1–16. DOI
Balakrishnan M, Kozicki M N, Poweleit C D, Bhagat S, Alford T L, Mitkova M. J Non-Cryst Solids. 2007;353:1454–1459. doi: 10.1016/j.jnoncrysol.2006.09.071. DOI
Adam J-L, Zhang X, editors. Amsterdam, Netherlands: Elsevier; 2014. ((Woodhead Publishing Series in Electronic and Optical Materials)).