Complex insight on microanatomy of larval "human broad tapeworm" Dibothriocephalus latus (Cestoda: Diphyllobothriidea)
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
project No. 19-28399X
EXPRO program of the Czech Science Foundation
RVO: 60077344
Parazitologický ústav, Akademie Věd České Republiky
APVV-15-0004
Agentúra na Podporu Výskumu a Vývoja
SAS-MOST JRP 2016/7
Bilateral project of Slovak Academy of Sciences-Taiwan Ministry of Science and Technology
MOST 106-2923-B-038-001-MY3
Bilateral project of Slovak Academy of Sciences-Taiwan Ministry of Science and Technology
project 2/0159/16
Grant Agency VEGA
ITMS: 26220220116
Research & Development Operational Program funded by the ERDF
PubMed
31434579
PubMed Central
PMC6702751
DOI
10.1186/s13071-019-3664-8
PII: 10.1186/s13071-019-3664-8
Knihovny.cz E-zdroje
- Klíčová slova
- Cestoda, Glands, Immunofluorescence, Microtriches, Plerocercoids, Protonephridia, Receptors, Ultrastructure,
- MeSH
- Diphyllobothrium anatomie a histologie ultrastruktura MeSH
- larva anatomie a histologie ultrastruktura MeSH
- mikroskopie elektronová rastrovací MeSH
- nemoci ryb parazitologie MeSH
- nervový systém ultrastruktura MeSH
- potrava z moře (živočišná) parazitologie MeSH
- transmisní elektronová mikroskopie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: In Europe, the tapeworm Dibothriocephalus latus (syn. Diphyllobothrium latum) is a well-known etiological agent of human diphyllobothriosis, which spreads by the consumption of raw fish flesh infected by plerocercoids (tapeworm's larval stage). However, the process of parasite establishment in both intermediate and definitive hosts is poorly understood. This study was targeted mainly on the scolex (anterior part) of the plerocercoid of this species, which facilitates penetration of the parasite in intermediate paratenic fish hosts, and subsequently its attachment to the intestine of the definitive host. METHODS: Plerocercoids were isolated from the musculature of European perch (Perca fluviatilis) caught in Italian alpine lakes. Parasites were examined using confocal microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Immunofluorescence tagging was held on whole mount larvae. RESULTS: The organisation of the central and peripheral nervous system was captured in D. latus plerocercoids, including the ultrastructure of the nerve cells possessing large dense neurosecretory granules. Two types of nerve fibres run from the body surface toward the nerve plexus located in the parenchyma on each side of bothria. One type of these fibres was found to be serotoninergic and possessed large subtegumental nerve cell bodies. A well-developed gland apparatus, found throughout the plerocercoid parenchyma, produced heterogeneous granules with lucent core packed in a dense layer. Three different types of microtriches occurred on the scolex and body surface of plerocercoids of D. latus: (i) uncinate spinitriches; (ii) coniform spinitriches; and (iii) capilliform filitriches. Non-ciliated sensory receptors were observed between the distal cytoplasm of the tegument and the underlying musculature. CONCLUSIONS: Confocal laser scanning microscopy and electron microscopy (SEM and TEM) showed the detailed microanatomy of the nervous system in the scolex of plerocercoids, and also several differences in the larval stages compared with adult D. latus. These features, i.e. well-developed glandular system and massive hook-shaped uncinate spinitriches, are thus probably required for plerocercoids inhabiting fish hosts and also for their post-infection attachment in the human intestine.
Institute of Parasitology Slovak Academy of Sciences Hlinkova 3 04001 Košice Slovak Republic
University of South Bohemia Faculty of Science 37005 České Budějovice Czech Republic
Zobrazit více v PubMed
Chai JY, Murrell KD, Lymbery AJ. Fish-borne parasitic zoonoses: status and issues. Int J Parasitol. 2005;35:1233–1254. doi: 10.1016/j.ijpara.2005.07.013. PubMed DOI
Scholz T, Garcia HH, Kuchta R, Wicht B. Update on the human broad tapeworm (genus Diphyllobothrium), including clinical relevance. Clin Microbiol Rev. 2009;22:146–160. doi: 10.1128/CMR.00033-08. PubMed DOI PMC
Waeschenbach A, Brabec J, Scholz T, Littlewood DTJ, Kuchta R. The catholic taste of broad tapeworms—multiple routes to human infection. Int J Parasitol. 2017;47:831–843. doi: 10.1016/j.ijpara.2017.06.004. PubMed DOI
Kuchta R, Scholz T, Brabec J, Narduzzi-Wicht B. Chapter 17. Diphyllobothrium, Diplogonoporus, and Spirometra. In: Xiao L, Ryan U, Feng Y, editors. Biology of foodborne parasites. Boca Raton: CRC Press; 2015. pp. 299–326.
Chervy L. Unified terminology for cestode microtriches: a proposal from the International Workshops on Cestode Systematics in 2002–2008. Folia Parasitol. 2009;56:199–230. doi: 10.14411/fp.2009.025. PubMed DOI
Ӧhman-James C. Cytology and cytochemistry of the scolex gland cells in Diphyllobothrium ditremum (Creplin, 1825) Z Parasitenkd. 1973;42:77–86. doi: 10.1007/BF00329013. PubMed DOI
Halton DW, Gustafsson MKS. Functional morphology of the platyhelminth nervous system. Parasitology. 1996;113:S47–S52. doi: 10.1017/S0031182000077891. DOI
Rozario T, Newmark PA. A confocal microscopy-based atlas of tissue architecture in the tapeworm Hymenolepis diminuta. Exp Parasitol. 2015;158:31–41. doi: 10.1016/j.exppara.2015.05.015. PubMed DOI
Gustafsson MKS, Eriksson K. Localization and identification of catecholamines in the nervous system of Diphyllobothrium dendriticum (Cestoda) Parasitol Res. 1991;77:498–502. doi: 10.1007/BF00928417. PubMed DOI
Biserova NM, Kuryrev IA, Jensen K. GABA in the nervous system of the cestodes Diphyllobothrium dendriticum (Diphyllobothriidea) and Caryophyllaeus laticeps (Caryophyllidea), with comparative analysis of muscle innervation. J Parasitol. 2014;100:411–421. doi: 10.1645/13-366.1. PubMed DOI
Kutyrev IA, Biserova NM, Olennikov DN, Korneva JV, Mazur OE. Prostaglandins E2 and D2-regulators of host immunity in the model parasite Diphyllobothrium dendriticum: an immunocytochemical and biochemical study. Mol Biochem Parasitol. 2017;212:33–45. doi: 10.1016/j.molbiopara.2017.01.006. PubMed DOI
Gustafsson MKS, Wikgren MC. Development of immunoreactivity to the invertebrate neuropeptide small cardiac peptide-B in the tapeworm Diphyllobothrium dendriticum. Parasitol Res. 1989;75:396–400. doi: 10.1007/BF00931136. PubMed DOI
Gustafsson MKS, Wikgren MC, Karhi TJ, Schot LPC. Immunocytochemical demonstration of neuropeptides and serotonin in the tapeworm Diphyllobothrium dendriticum. Cell Tissue Res. 1985;240:255–260. doi: 10.1007/BF00222332. PubMed DOI
Kuperman BI, Davydov VG. The fine structure of glands in oncospheres, procercoids and plerocercoids of Pseudophyllidea (Cestoidea) Int J Parasitol. 1981;12:135–144. doi: 10.1016/0020-7519(82)90008-X. PubMed DOI
Halvorsen O, Wissler K. Studies of helminth fauna of Norway. XXVIII: an experimental study of the ability of Diphyllobothrium latum, D. dendriticum and D. ditremum (Cestoda, Pseudophyllidea) to infect paratenic hosts. Nor J Zool. 1973;21:201–210.
Bråten T. The fine structure of the tegument of Diphyllobothrium latum (L.): a comparison of the plerocercoid and adult stages. Z Parasitenkd. 1968;30:104–112. doi: 10.1007/BF00329478. PubMed DOI
Yoneva A, Scholz T, Kuchta R. Comparative morphology of surface ultrastructure of diphyllobothriidean tapeworms (Cestoda: Diphyllobothriidea) Invertebr Biol. 2018;137:38–48. doi: 10.1111/ivb.12202. DOI
Poddubnaya LG. Ultrastructure of reproductive ducts in Diphyllobothrium latum (Cestoda, Pseudophyllidea) males. Zool Zh. 2002;81:394–405.
Andersen KI, Gibson DI. A key to three species of larval Diphyllobothrium Cobbold, 1858 (Cestoda: Pseudophyllidea) occurring in European and North American freshwater fishes. Syst Parasitol. 1989;13:3–9. doi: 10.1007/BF00006946. DOI
Schaeffner BC, Ditrich O, Kuchta R. A century of taxonomic uncertainty: re-description of two species of tapeworms (Diphyllobothriidea) from Arctic seals. Polar Biol. 2018;41:2543–2559. doi: 10.1007/s00300-018-2396-0. DOI
Okino T, Hatsushika R. Ultrastructure studies on the papillae and the nonciliated sensory receptors of adult Spirometra erinacei (Cestoda, Pseudophyllidea) Parasitol Res. 1994;80:454–458. doi: 10.1007/BF00932690. PubMed DOI
Dovgalev AS, Valovaya MA, Piskunova YA, Romanenko NA, Khobakova VI, Artamoshin AS. The morphology of human diphyllobothriasis agent in the far east. Med Parazitol. 1991;6:42–46. PubMed
Hernández-Orts JS, Scholz T, Brabec J, Kuzmina T, Kuchta R. High morphological plasticity and global geographical distribution of the Pacific broad tapeworm Adenocephalus pacificus (syn. Diphyllobothrium pacificum): molecular and morphological survey. Acta Trop. 2015;149:168–178. doi: 10.1016/j.actatropica.2015.05.017. PubMed DOI
Hernández-Orts JS, Scholz T, Brabec J, Kuzmina T, Kuchta R. Does the number of genital organs matter? Case of the seal tapeworm Diphyllobothrium (syn. Diplogonoporus) tetrapterum (Cestoda: Diphyllobothriidea) Can J Zool. 2018;96:193–204. doi: 10.1139/cjz-2017-0013. DOI
Caira JN, Jensen K, Fyler CA. A new genus of tapeworm (Cestoda: Onchoproteocephalidea) from sawfish (Elasmobranchii: Pristidae) J Parasitol. 2018;104:133–144. doi: 10.1645/17-165. PubMed DOI
Grammeltvedt AF. Differentiation of the tegument and associated structures in Diphyllobothrium dendriticum Nitzsch (1824) (Cestoda: Pseudophyllidea). An electron microscopical study. Int J Parasitol. 1973;3:321–327. doi: 10.1016/0020-7519(73)90110-0. PubMed DOI
Kuperman BI. Functional morphology of lower cestodes: ontogenetic and evolutionary aspects. Leningrad: Nauka; 1988.
Mustafina AR, Biserova NM. Pyramicocephalus phocarum (Cestoda: Diphyllobothriidea): the ultrastructure of the tegument, glands, and sensory organs. Invertebr Zool. 2017;14:154–161. doi: 10.15298/invertzool.14.2.09. DOI
Ubelaker J, Cooper NB, Allison VF. Possible defensive mechanism of Hymenolepis diminuta cysticercoids to hemocytes of the beetle Tribolium confusum. J Invertebr Pathol. 1970;16:310–312. doi: 10.1016/0022-2011(70)90081-9. PubMed DOI
Featherston DW. Taenia hydatigena. IV. Ultrastructure study of the tegument. Z Parasitenkd. 1972;38:214–232. doi: 10.1007/BF00329599. PubMed DOI
Lumsden RD. The tapeworm tegument: a model system for studies on membrane structure and function in host-parasite relationships. Trans Am Microsc Soc. 1975;94:501–507. doi: 10.2307/3225522. PubMed DOI
MacKinnon BM, Burt MDB. Polymorphism of microtriches in the cysticercoid of Ophryocotyle insignis Lönnberg, 1890 from the limpet Patella vulgata. Can J Zool. 1983;61:1062–1070. doi: 10.1139/z83-140. DOI
Rothman AH. Electron microscope studies of tapeworms: the surface structures of Hymenolepis diminuta (Rudolphi, 1819) Blanchard, 1891. Trans Am Microsc Soc. 1963;82:22–30. doi: 10.2307/3223817. DOI
Hayunga EG. Morphological adaptations of intestinal helminths. J Parasitol. 1991;77:865–873. doi: 10.2307/3282734. PubMed DOI
Hess E, Guggenheim R. A study of the microtriches and sensory processes of the tetrathyridium of Mesocestoides corti Hoeppli, 1925, by transmission and scanning electron microscopy. Z Parasitenkd. 1977;53:189–199. doi: 10.1007/BF00380464. DOI
Thompson RCA, Hayton AR, Jue Sue LP. An ultrastructural study of the microtriches of adult Proteocephalus tidswelli (Cestoda: Proteocephalidea) Z Parasitenkd. 1980;64:95–111. doi: 10.1007/BF00927060. PubMed DOI
Andersen KI. The functional morphology of the scolex of Diphyllobothrium Cobbold (Cestoda, Pseudophyllidea). A scanning electron and light microscopical study on scoleces of adult D. dendriticum (Nitzsch), D. latum (L.) and D. ditremum (Creplin) Int J Parasitol. 1975;5:487–493. doi: 10.1016/0020-7519(75)90038-7. PubMed DOI
Biserova NM, Kemaeva AA. The innervations of the frontal gland in scolex of the plerocercoid Diphyllobothrium ditremum (Cestoda: Diphyllobothriidea) In: Pugachev ON, editor. Problems of cestodology IV. Saint Petersburg: ZLMOR Press; 2012. pp. 13–33.
Wardle RA, McLeod JA. The zoology of tapeworms. Minneapolis: The University of Minnesota Press; 1952.
Johnstone J. Tetrarhynchus erinaceus Van Beneden. I. Structure of larva and adult worm. Parasitology. 1912;4:364–415. doi: 10.1017/S0031182000002778. DOI
Rees G. The plerocercoid larva of Grillotia heptanchi (Vaullegeard) Parasitology. 1950;4:265–272. doi: 10.1017/S0031182000018114. PubMed DOI
Terenina NB, Kreshchenko ND, Mochalova NB, Movsesyan SO. Serotonin and neuropeptide FMRFamide in the attachment organs of trematodes. Helminthologia. 2018;55:185–194. doi: 10.2478/helm-2018-0022. PubMed DOI PMC
Halton DW, Maule AG. Flatworm nerve-muscle: structural and functional analysis. Can J Zool. 2004;82:316–333. doi: 10.1139/z03-221. DOI
Terenina NB, Gustafsson MKS, Reuter M. Serotonin, reserpine, and motility in Mesocestoides tetrathyridia—an experimental spectrofluorometry and immunocytochemistry study. Parasitol Res. 1995;81:677–683. doi: 10.1007/BF00931846. PubMed DOI
Biserova NM, Kutyrev IA. Localization of prostaglandin E2, γ-aminobutyric acid, and other potential immunomodulators in the plerocercoid Diphyllobothrium dendriticum (Cestoda) Biol Bull. 2014;41:271–280. doi: 10.1134/S1062359014030029. PubMed DOI
Gustafsson MKS. The neuroanatomy of parasitic flatworms. Adv Neuroimmunol. 1992;2:267–286. doi: 10.1016/S0960-5428(06)80051-3. DOI
Moreno MJ, Casado N, Urrea-Paris MA, Rodriguez-Caabeiro F. Evidence of tubulin in the scolex gland ducts of Gymnorhynchus gigas plerocercoid (Cestoda: Trypanorhyncha) Folia Parasitol. 2001;48:163–164. doi: 10.14411/fp.2001.027. PubMed DOI
Kuhlow F. Bau und differential diagnose heimischer Diphyllobothrium plerocercoide. Z Tropenmed Parasitol. 1953;4:186–202. PubMed
Osaki Y. Ultrastructural studies on the plerocercoid of Spirometra erinacei in experimental sparganosis. Parasitol Res. 1990;76:466–472. doi: 10.1007/BF00931051. PubMed DOI
Bylund G. Experimentell undersökning av Diphyllobothrium dendriticum (=D. norvegicum) från norra Finland. Tiedoksianto-Information Parasitol Inst Soc Scient Fennica. 1969;10:3–17.
Halvorsen O. Studies of the helminth fauna of Norway XV: On the taxonomy and biology of plerocercoids of Diphyllobothrium Cobbold, 1958 (Cestoda, Pseudophyllidea) from northwestern Europe. Nor J Zool. 1970;18:113–174.
Richards KS, Arme C. Observations on the microtriches and stages in their development and emergence in Caryophyllaeus laticeps (Caryophyllidea: Cestoda) Int J Parasitol. 1981;11:369–375. doi: 10.1016/0020-7519(81)90007-2. DOI
Kuperman BI, Davydov VG. The fine structure of frontal glands in adult cestodes. Int J Parasitol. 1982;12:285–293. doi: 10.1016/0020-7519(82)90031-5. PubMed DOI
Gustafsson MKS, Vaihela B. Two types of frontal glands in Diphyllobothrium dendriticum (Cestoda, Pseudophyllidea) and their fate during the maturation of the worm. Z Parasitenkd. 1981;66:145–154. doi: 10.1007/BF00925721. DOI
Kulow H. Sowjetische erfahrungen über die Bothriocefalosis, Khawiosis und Philometrosis. Z Binnenfisch DDR. 1973;20:263–268.
Tsubokawa D, Hatta T, Maeda H, Mikami F, Goso Y, Nakamura T, et al. A cysteine protease from Spirometra erinaceieuropaei plerocercoid is a critical factor for host tissue invasion and migration. Acta Trop. 2017;167:99–107. doi: 10.1016/j.actatropica.2016.12.018. PubMed DOI
Yang Y, Wen YJ, Cai YN, Vallée I, Boireau P, Liu MY, et al. Serine proteases of parasitic helminths. Korean J Parasitol. 2015;53:1–11. doi: 10.3347/kjp.2015.53.1.1. PubMed DOI PMC
Liu LN, Wang ZQ, Zhang X, Jiang P, Qi X, Liu RD, et al. Characterization of Spirometra erinaceieuropaei plerocercoid cysteine protease and potential application for serodiagnosis of sparganosis. PLoS Negl Trop Dis. 2015;9:e0003807. doi: 10.1371/journal.pntd.0003807. PubMed DOI PMC
Swiderski Z, Euzet L, Schönenberger N. Ultratructures du systѐme nѐphridien des cestodes cyclophyllides Catenotaenia pusilla (Goeze, 1782) Hymenolepis diminuta (Rudolphi, 1870) et Inermicapsifer madagascariensis (Davine, 1870) Boer, 1956. La Cellule. 1975;71:7–18. PubMed
Lumsden RD, Hildreth MB. The fine structure of adult tapeworms. In: Arme C, Pappas PW, editors. Biology of the Eucestoda. London: Academic Press; 1983. pp. 177–233.
Lumsden RD, Specian R. The morphology histology and fine structure of the adult stage of the cyclophyllidean tapeworm Hymenolepis diminuta. In: Arai HP, editor. Biology of the tapeworm Hymenolepis diminuta. London: Academic Press; 1980. pp. 157–280.
Von Bonsdorff CH, Telkkä A. The flagellar structure of the flame cell in fish tapeworm (Diphyllobothrium latum) Z Zellforschung. 1966;70:169–179. doi: 10.1007/BF00335671. PubMed DOI
Howells RE. Observations on the nephridial system of the cestode Moniezia expansa (Rud., 1805) Parasitology. 1969;59:449–459. doi: 10.1017/S0031182000082408. PubMed DOI
McCullough JS, Farweather I. Ultrastructure of excretory system of Trilocularia acanthiaevulgaris (Cestoda, Tetraphyllidea) Parasitol Res. 1991;77:157–160. doi: 10.1007/BF00935430. PubMed DOI
Yamane Y, Nakagawa A, Makino Y, Hirai K. The ultrastructural study of the excretory canal of the cestode, Diphyllobothrium latum. Jap J Parasitol. 1982;31:89–97.
Hertel AL. Excretion and osmoregulation in the flatworms. Trans Am Microsc Soc. 1993;112:10–17. doi: 10.2307/3226778. DOI
Rohde K. Protonephridia as phylogenetic characters. In: Littlewood DTJ, Bray RA, editors. Interrelationships of the Platyhelminthes (The Systematics Association special volume, series 60) London: Taylor & Francis; 2001. pp. 203–216.
Parshad VR, Guraya SS. Comparative histochemical observations on the excretory system of helminth parasites. Z Parasitenkd. 1977;52:81–89. doi: 10.1007/BF00380561. PubMed DOI
Shi SR, Key ME, Kalra KL. Antigen retrieval in formalin-fixed, paraffin-embedded tissues: an enhancement method for immunohistochemical staining based on microwave oven heating of tissue sections. J Histochem Cytochem. 1991;39:741–748. doi: 10.1177/39.6.1709656. PubMed DOI