An examination of nervous system revealed unexpected immunoreactivity of both secretory apparatus and excretory canals in plerocercoids of two broad tapeworms (Cestoda: Diphyllobothriidea)

. 2023 Jun ; 150 (7) : 612-622. [epub] 20230320

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36938799

Dibothriocephalus ditremus and Dibothriocephalus latus are diphyllobothriidean tapeworms autochthonous to Europe. Their larval stages (plerocercoids) may seriously alter health of their intermediate fish hosts (D. ditremus) or cause intestinal diphyllobothriosis of the final human host (D. latus). Despite numerous data on the internal structure of broad tapeworms, many aspects of the morphology and physiology related to host–parasite co-existence remain unclear for these 2 species. The main objective of this work was to elucidate functional morphology of the frontal part (scolex) of plerocercoids, which is crucial for their establishment in fish tissues and for an early attachment in final hosts. The whole-mount specimens were labelled with different antibodies and examined by confocal microscope to capture their complex 3-dimensional microanatomy. Both species exhibited similar general pattern of immunofluorescent signal, although some differences were observed. In the nervous system, FMRF amide-like immunoreactivity (IR) occurred in the bi-lobed brain, 2 main nerve cords and surrounding nerve plexuses. Differences between the species were found in the structure of the brain commissures and the size of the sensilla. Synapsin IR examined in D. ditremus occurred mainly around FMRF amide-like IR brain lobes and main cords. The unexpected finding was an occurrence of FMRF amide-like IR in terminal reservoirs of secretory gland ducts and excretory canals, which has not been observed previously in any tapeworm species. This may indicate that secretory/excretory products, which play a key role in host–parasite relationships, are likely to contain FMRF amide-related peptide/s.

Zobrazit více v PubMed

Andersen K (1975) Ultrastructural studies on Diphyllobothrium ditremum and D. dendriticum (Cestoda, Pseudophyllidea), with emphasis on the scolex tegument and the tegument in the area around the genital atrium. Zeitschrift für Parasitenkunde 46, 253–264. PubMed

Barčák D, Yoneva A, Sehadová H, Oros M, Gustinelli A and Kuchta R (2019) Complex insight on microanatomy of larval ‘human broad tapeworm’ Dibothriocephalus latus (Cestoda: Diphyllobothriidea). Parasites & Vectors 12, 408. PubMed PMC

Biserova NM and Gordeev II (2010) Fine structure of nervous system in plerocercoid Ligula intestinalis (Cestoda: Diphyllobothriidea). Invertebrate Zoology 7, 133–154.

Biserova NM and Kemaeva AA (2012) The innervations of the frontal gland in scolex of the plerocercoid Diphyllobothrium ditremum (Cestoda: Diphyllobothriidea). In Pugachev ON (ed.). Problems of Cestodology IV. Saint Petersburg: ZLMOR Press, pp. 13–33.

Biserova NM and Kutyrev IA (2014) Localization of prostaglandin E2, γ-aminobutyric acid, and other potential immunomodulators in the plerocercoid Diphyllobothrium dendriticum (Cestoda). Biology Bulletin 41, 271–280. PubMed

Biserova NM, Kuryrev IA and Jensen K (2014) GABA in the nervous system of the cestodes Diphyllobothrium dendriticum (Diphyllobothriidea) and Caryophyllaeus laticeps (Caryophyllidea), with comparative analysis of muscle innervation. Journal of Parasitology 100, 411–421. PubMed

Biserova NM, Korneva JV and Polyakova TA (2020) The brain structure of selected trypanorhynch tapeworms. Journal of Morphology 281, 893–913. PubMed

Biserova NM, Mustafina AR and Malakhov VV (2021) Structure of the excretory system of the plerocercoid Pyramicocephalus phocarum (Cestoda: Diphyllobothriidea): proof for the existence of independent terminal cells. Doklady Biological Sciences 496, 17–20. PubMed

Biserova NM, Mustafina AR and Raikova OI (2022) The neuro-glandular brain of the Pyramicocephalus phocarum plerocercoid (Cestoda, Diphyllobothriidea): immunocytochemical and ultrastructural study. Zoology 152, 126012. PubMed

Bradbury AF and Smyth DG (1991) Peptide amidation. Trends in Biochemical Sciences 16, 112–115. PubMed

Brennan GP, Halton DW, Maule AG and Shaw C (1993) Electron immunogold labeling of regulatory peptide immunoreactivity in the nervous system of Moniezia expansa (Cestoda: Cyclophyllidea). Parasitology Research 79, 409–415. PubMed

Bylund G and Andersen K (1994) Thirty years of Diphyllobothrium research and future trends. Bulletin of the Scandinavian Society for Parasitology 4, 47–56.

Cebrià F (2008) Organization of the nervous system in the model planarian Schmidtea mediterranea: an immunocytochemical study. Neuroscience Research 61, 375–384. PubMed

Chai JY, Murrell KD and Lymbery AJ (2005) Fish-borne parasitic zoonoses: status and issues. International Journal for Parasitology 35, 1233–1254. PubMed

Fairweather I and Halton DW (1991) Neuropeptides in platyhelminthes. Parasitology 102, 77–92. PubMed

Gustafsson MKS (1991) Skin the tapeworms before you stain their nervous system! A new method for whole-mount immunocytochemistry. Parasitology Research 77, 509–516. PubMed

Gustafsson MKS and Eriksson K (1992) Never ending growth and a growth factor. I. Immunocytochemical evidence for the presence of basic fibroblast growth factor in a tapeworm. Growth Factors 7, 327–334. PubMed

Gustafsson MKS and Vaihela B (1981) Two types of frontal glands in Diphyllobothrium dendriticum (Cestoda, Pseudophyllidea) and their fate during the maturation of the worm. Zeitschrift für Parasitenkunde 66, 145–154.

Gustafsson MKS and Wikgren MC (1989) Development of immunoreactivity to the invertebrate neuropeptide small cardiac peptide-B in the tapeworm Diphyllobothrium dendriticum. Parasitology Research 75, 396–400. PubMed

Gustafsson MKS, Wikgren MC, Karhi TJ and Schot LP (1985) Immunocytochemical demonstration of neuropeptides and serotonin in the tapeworm Diphyllobothrium dendriticum. Cell and Tissue Research 240, 255–260. PubMed

Gustafsson MKS, Lehtonen MAI and Sundler F (1986) Immunocytochemical evidence for the presence of mammalian neurohormonal peptides in neurons of the tapeworm Diphyllobothrium dendriticum. Cell and Tissue Research 243, 41–49. PubMed

Gustafsson MKS, Halton DW, Maule AG, Reuter M and Shaw C (1994) The gull-tapeworm, Diphyllobothrium dendriticum and neuropeptide F: an immunocytochemical study. Parasitology 109, 599–609.

Gustinelli A, Menconi V, Prearo M, Caffara M, Righetti M, Scanzio T, Raglio A and Fioravanti ML (2016) Prevalence of Diphyllobothrium latum (Cestoda: Diphyllobothriidae) plerocercoids in fish species from four Italian lakes and risk for the consumers. International Journal of Food Microbiology 235, 109–112. PubMed

Halton DW and Maule AG (2004) Flatworm nerve-muscle: structural and functional analysis. Canadian Journal of Zoology 82, 316–333.

Halton DW, Maule AG, Brennan GP, Shaw C, Stoitsova SR and Johnston CF (1994) Grillotia erinaceus (Cestoda, Trypanorhyncha) – localization of neuroactive substances in the plerocercoid, using confocal and electron-microscopic immunocytochemistry. Experimental Parasitology 79, 410–423. PubMed

Halvorsen O (1970) Studies of the helminth fauna of Norway XV: on the taxonomy and biology of plerocercoids of Diphyllobothrium Cobbold, 1858 (Cestoda, Pseudophyllidea) from north-western Europe. Norwegian Journal of Zoology 18, 113–174.

Halvorsen O and Andersen K (1984) The ecological interaction between Arctic charr, Salvelinus alpinus (L), and the plerocercoid stage of Diphyllobothrium ditremum. Journal of Fish Biology 25, 305–316.

Harnett W (2014) Secretory products of helminth parasites as immunomodulators. Molecular and Biochemical Parasitology 195, 130–136. PubMed

Hilfiker S, Schweizer FE, Kao HT, Czernik AJ, Greengard P and Augustine GJ (1998) Two sites of action for synapsin domain E in regulating neurotransmitter release. Nature Neuroscience 1, 29–35. PubMed

Jekely G (2013) Global view of the evolution and diversity of metazoan neuropeptide signaling. Proceedings of the National Academy of Sciences of the USA 110, 8702–8707. PubMed PMC

Kao HT, Porton B, Hilfiker S, Stefani G, Pieribone VA, DeSalle R and Greengard P (1999) Molecular evolution of the synapsin gene family. Journal of Experimental Zoology 285, 360–377. PubMed

Koziol U, Koziol M, Preza M, Costabile A, Brehm K and Castillo E (2016) De novo discovery of neuropeptides in the genomes of parasitic flatworms using a novel comparative approach. International Journal for Parasitology 46, 709–721. PubMed

Králová-Hromadová I, Radačovská A, Čisovská Bazsalovicsová E and Kuchta R (2021) Ups and downs of infections with the broad fish tapeworm Dibothriocephalus latus in Europe from 1900 to 2020: part I. Advances in Parasitology 114, 75–166. PubMed

Kuchta R and Scholz T (2017) Diphyllobothriidea. In Caira JN and Jensen K (eds), Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth. Lawrence, KS, USA: University of Kansas, Natural History Museum, pp. 191–199.

Kuhlow F (1953) Bau und differential diagnose heimischer Diphyllobothrium plerocercoide. Zeitschrift für Tropenmedizin und Parasitologie 4, 186–202. PubMed

Kuperman BI and Davydov VG (1981) The fine structure of glands in oncospheres, procercoids and plerocercoids of Pseudophyllidea (Cestoidea). International Journal for Parasitology 12, 135–144. PubMed

Kuperman BI and Davydov VG (1982) The fine structure of frontal glands in adult cestodes. International Journal for Parasitology 12, 285–293. PubMed

Kutyrev IA, Biserova NM, Olennikov DN, Korneva JV and Mazur OE (2017) Prostaglandins E2 and D2-regulators of host immunity in the model parasite Diphyllobothrium dendriticum: an immunocytochemical and biochemical study. Molecular & Biochemical Parasitology 212, 33–45. PubMed

Lange AB, Orchard I and Te Brugge VA (1991) Evidence for the involvement of a SchistoFLRF-amide-like peptide in the neural control of locust oviduct. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology 168, 383–391.

Lightowlers MW and Rickard MD (1988) Excretory-secretory products of helminth parasites: effects on host immune responses. Parasitology 96(Suppl.), S123–S166. PubMed

Lindholm AM, Reuter M and Gustafsson MKS (1998) The NADPH-diaphorase staining reaction in relation to the aminergic and peptidergic nervous system and the musculature of adult Diphyllobothrium dendriticum. Parasitology 117, 283–292. PubMed

Lindroos P and Still MJ (1990) Laminin-type, fibronectin-type and collagen type IV-like substances in Diphyllobothrium dendriticum – an immunocytochemical study. Acta Academica Aboensis 50, 53–58.

Lumsden RD and Hildreth MB (1983) The fine structure of adult tapeworms. In Arme C and Pappas PW (eds), Biology of the Eucestoda, Vol. 1. London: Academic Press, pp. 177–233.

Maule AG, Shaw C, Halton DW, Thim L, Johnston CF, Fairweather I and Buchanan KD (1991) Neuropeptide F: a novel parasitic flatworm regulatory peptide from Moniezia expansa (Cestoda: Cyclophyllidea). Parasitology 102, 309–316.

Maule AG, Halton DW, Shaw C and Johnston CF (1993a) The cholinergic, serotoninergic and peptidergic components of the nervous system of Moniezia expansa (Cestoda, Cyclophyllidea). Parasitology 106, 429–440. PubMed

Maule AG, Shaw C, Halton D and Thim L (1993b) GNFFRFamide: a novel FMRFamide-immunoreactive peptide isolated from the sheep tapeworm, Moniezia expansa. Biochemical and Biophysical Research Communications 193, 1054–1060. PubMed

Maule AG, Mousley A, Marks NJ, Day TA, Thompson DP, Geary TG and Halton DW (2002) Neuropeptide signaling systems – potential drug targets for parasite and pest control. Current Topics in Medicinal Chemistry 2, 733–758. PubMed

McVeigh P, Mair GR, Atkinson L, Ladurner P, Zamanian M, Novozhilova E, Marks NJ, Day TA and Maule AG (2009) Discovery of multiple neuropeptide families in the phylum Platyhelminthes. International Journal for Parasitology 39, 1243–1252. PubMed PMC

Moreno MJ, Casado N, Urrea-Paris MA and Rodriguez-Caabeiro F (2001) Evidence of tubulin in the scolex gland ducts of Gymnorhynchus gigas plerocercoid (Cestoda: Trypanorhyncha). Folia Parasitologica 48, 163–164. PubMed

Mustafina AR and Biserova NM (2017) Pyramicocephalus phocarum (Cestoda: Diphyllobothriidea): the ultrastructure of the tegument, glands, and sensory organs. Invertebrate Zoology 14, 154–161.

Mustafina AR and Biserova NM (2022) Excretory system ultrastructure of diphyllobothriid tapeworm Pyramicocephalus phocarum (Cestoda) with cytochemical and functional implication. Invertebrate Zoology 19, 159–184.

Öhman-James C (1968) Histochemical studies of the cestode Diphyllobothrium dendriticum Nitzsch, 1824. Zeitschrift für Parasitenkunde 30, 40–56. PubMed

Öhman-James C (1973) Cytology and cytochemistry of the scolex gland cells in Diphyllobothrium ditremum (Creplin, 1825). Zeitschrift für Parasitenkunde 42, 77–86. PubMed

Rahkonen R, Aalto J, Koski P, Sarkka J and Juntunen K (1996) Cestode larvae Diphyllobothrium dendriticum as a cause of heart disease leading to mortality in hatchery-reared sea trout and brown trout. Diseases of Aquatic Organisms 25, 15–22.

Reuter M and Gustafsson M (1989) ‘Neuroendocrine cells’ in flatworms – progenitors to metazoan neurons? Archives of Histology and Cytology 52, 253–263. PubMed

Richards KS and Arme C (1981) Observations on the microtriches and stages in their development and emergence in Caryophyllaeus laticeps (Caryophyllidea: Cestoda). International Journal for Parasitology 11, 369–375.

Richter S, Loesel R, Purschke G, Schmidt-Rhaesa A, Scholtz G, Stach T, Vogt L, Wanninger A, Brenneis G, Doring C, Faller S, Fritsch M, Grobe P, Heuer CM, Kaul S, Moller OS, Muller CHG, Rieger V, Rothe BH, Stegner MEJ and Harzsch S (2010) Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Frontiers in Zoology 7, 29. PubMed PMC

Rodger HD (1991) Diphyllobothrium sp. infections in freshwater reared salmon (Salmo salar L.). Aquaculture 95, 7–14.

Rozario T and Newmark PA (2015) A confocal microscopy-based atlas of tissue architecture in the tapeworm Hymenolepis diminuta. Experimental Parasitology 158, 31–41. PubMed

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P and Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nature Methods 9, 676–682. PubMed PMC

Shyamala M, Fisher JM and Scheller RH (1986) A neuropeptide precursor expressed in Aplysia neuron L5. DNA 5, 203–208. PubMed

Valtonen ET and Julkunen M (1995) Influence of the transmission of parasites from prey fishes on the composition of the parasite community of a predatory fish. Canadian Journal of Fisheries and Aquatic Sciences 52, 233–245.

Waeschenbach A, Brabec J, Scholz T, Littlewood DTJ and Kuchta R (2017) The catholic taste of broad tapeworms – multiple routes to human infection. International Journal for Parasitology 47, 831–843. PubMed

Webster LA and Wilson RA (1970) The chemical composition of protonephridial canal fluid from the cestode Hymenolepis diminuta. Comparative Biochemistry and Physiology 35, 201–209.

Weiland KA and Meyers TR (1989) Histopathology of Diphyllobothrium ditremum plerocercoids in Coho salmon Oncorhynchus kisutch. Diseases of Aquatic Organisms 6, 175–178.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...