Analysis of color shift on butterfly wings by Fourier transform of images from atomic force microscopy

. 2019 Dec ; 82 (12) : 2007-2013. [epub] 20190823

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31441987

Grantová podpora
LO1401 National Sustainability Program, SIX

Butterfly wings have complex structure lending it several interesting properties. Coloration of the wing is one of the first things to encounter and the overall visual effect is in fact influenced by several factors. Chemical pigments set the base color of the wing, topographical structures on the wing scales cause color shift by interference and their arrangement into diffraction grating causes iridescence. The thin film interference can be attributed to microscopic ridges covering wing scales. Observation and calculation of the color shift on wings of Euploea mulciber species using Fourier transform of images obtained by atomic force microscopy is the focus of this article.

Zobrazit více v PubMed

Alieva, T., & Agullo-Lopez, F. (1996). Optical wave propagation of fractal fields. Optics Communications, 125, 267-274. https://doi.org/10.1016/0030-4018(95)00702-4

Bankar, T. N., Dar, M. A., & Pandit, R. S. (2018). Diversity and functions of chromophores in insects: A review. In: M. M. Shah & U. Sharif (Eds.), Insect science diversity, conservation and nutrition, IntechOpen (pp. 1-16). https://doi.org/10.5772/intechopen.74480

Berthomieu, C., & Hienerwadel, AE. R. (2009). Fourier transform infrared (FTIR) spectroscopy. Photosynthesis Research, 101, 157-170. https://doi.org/10.1007/s11120-009-9439-x

Binning, G., Quate, C. F., & Gerber, C. (1986). Atomic force microscope. Physical Review Letters, 56(9), 930-933. https://doi.org/10.1103/PhysRevLett.56.930

Fadiran, O. O., & Meredith, J. C. (2014). Surface treated pollen performance as a renewable reinforcing filler for poly(vinyl acetate). Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2, 17031-17040. https://doi.org/10.1039/C4TA03219E

Garczyk, Z., Stach, S., Talu, S., Sobola, D., & Wróbel, Z. (2017). Stereometric parameters of butterfly wings. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 31, 1-10. https://doi.org/10.4028/www.scientific.net/JBBBE.31.1

Giraldo, M. A., & Stavenga, G. D. (2016). Brilliant iridescence of Morpho butterfly wing scales is due to both a thin film lower lamina and a multilayered upper lamina. Journal of Comparative Physiology A, 202, 381-388. https://doi.org/10.1007/s00359-016-1084-1

Han, J., Su, H., Zhang, D., Chen, J., & Chen, Z. (2009). Butterfly wings as natural photonic crystal scaffolds for controllable assembly of CdS nanoparticles. Journal of Materials Chemistry, 19, 8741-8746. https://doi.org/10.1039/b911101h

Hecht, E. (2001). Optics (4th ed.). Boston, MA: Addison-Wesley.

Hollas, J. M. (2004). Modern spectroscopy (4th ed.). Hoboken, NJ: John Wiley & Sons Ltd.

Kishimoto, S., Wang, Q., Xie, H., & Zhao, Y. (2007). Study of the surface structure of butterfly wings using the scanning electron microscopic moiré method. Applied Optics, 46(28), 7026-7034. https://doi.org/10.1364/AO.46.007026

Korayem, M. H., Kavousi, A., & Ebrahimi, N. (2011). Dynamic analysis of tapping-mode AFM considering capillary force interactions. Scientia Iranica, 18(1), 121-129. https://doi.org/10.1016/j.scient.2011.03.014

Kronforst, M. R. (2015). Exploring the molecular basis of monarch butterfly color pattern variation. Pigment Cell & Melanoma Research, 28(2), 127-130. https://doi.org/10.1111/pcmr.12353

Leertouwer, H. L., Wilts, B. D., & Stavenga, D. G. (2011). Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy. Optics Express, 19, 24061-24066. https://doi.org/10.1364/OE.19.024061

Liu, K., & Jiang, L. (2011). Bio-inspired design of multiscale structures for function integration. Nano Today, 6, 155-175. https://doi.org/10.1016/j.nantod.2011.02.002

Martin, Y., Williams, C. C., & Wickramasinghe, H. K. (1987). Atomic force microscope - force mapping and profiling on a sub 100-å scale. Journal of Applied Physics, 61, 4723-4729. https://doi.org/10.1063/1.338807

Mekahlia, S., & Bouzid, B. (2009). Chitosan-Copper (II) complex as antibacterial agent: Synthesis, characterization and coordinating bond- activity correlation study. Physics Procedia, 2, 1045-1053. https://doi.org/10.1016/j.phpro.2009.11.061

Meyer, G., & Amer, N. M. (1998). Novel optical approach to atomic force microscopy. Applied Physics Letters, 53, 1045-1047. https://doi.org/10.1063/1.100061

Mika, F., Matějková-Plšková, J., Jiwajinda, S., Dechkrong, P., & Shiojiri, M. (2012). Photonic crystal structure and coloration of wing scales of butterflies exhibiting selective wavelength iridescence. Materials, 5, 754-771. https://doi.org/10.3390/ma5050754

Niu, S., Mu, Z., Yang, M., Zhang, J., Han, Z., & Ren, L. (2015). Excellent structure-based multifunction of morpho butterfly wings: A review. Journal of Bionic Engineering, 12(2), 170-189. https://doi.org/10.1016/S1672-6529(14)60111-6

Prum, R. O., Quinn, T., & Torres, R. H. (2006). Anatomically diverse butterfly scales all produce structural colours by coherent scattering. The Journal of Experimental Biology, 209, 748-765. https://doi.org/10.1242/jeb.02051

Shamim, G., Ranjan, S. K., Pandey, D. M., & Ramani, R. (2014). Biochemistry and biosynthesis of insect pigments. European Journal of Entomology, 111(2), 149-164. https://doi.org/10.14411/eje.2014.021

Singer, A., Boucheron, L., Dietze, S. H., Jensen, K. E., Vine, D., Mcnulty, I., … Shpyrko, O. G. (2016). Domain morphology, boundaries, and topological defects in biophotonic gyroid nanostructures of butterfly wing scales. Science Advances, 2(6), 1-6. https://doi.org/10.1126/sciadv.1600149

Singh, A., Hede, S., & Sastry, M. (2007). Spider silk as an active scaffold in the assembly of gold nanoparticles and application of the gold - silk bioconjugate in vapor sensing. Bioconjugate Sensors, 411045, 466-473. https://doi.org/10.1002/smll.200600413

Sobola, D., Talu, S., Sadovsky, P., Papez, N., & Grmela, L. (2017). Application of AFM measurement and fractal analysis to study the surface of natural optical structures. Applied Physics, 15, 569-576. https://doi.org/10.15598/aeee.v15i3.2242

Sobola, D., Talu, S., Solaymani, S., & Grmela, L. (2017). Influence of scanning rate on quality of AFM image: Study of surface statistical metrics. Microscopy Research and Technique, 80, 1328-1336. https://doi.org/https://doi.org/10.1002/jemt.22945

Ţălu, Ş. (2015). Micro and nanoscale characterization of three dimensional surfaces. Basics and applications. Cluj-Napoca, Romania: Napoca Star Publishing House.

Talu, S., Morozov, I. A., Sobola, D., & Škarvada, P. (2018). Multifractal characterization of butterfly wings scales. Bulletin of Mathematical Biology, 80(11), 2856-2870. https://doi.org/https://doi.org/10.1007/s11538-018-0490-7

Zhou, H., Fan, T., Zhang, D., Guo, Q., & Ogawa, H. (2007). Novel bacteria-templated sonochemical route for the in situ one-step synthesis of ZnS hollow nanostructures. Chemistry of Materials, 19, 2144-2146. https://doi.org/10.1021/cm0629311

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...