Bacterial immunogenic α-galactosylceramide identified in the murine large intestine: dependency on diet and inflammation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31484693
PubMed Central
PMC6824495
DOI
10.1194/jlr.ra119000236
PII: S0022-2275(20)32287-2
Knihovny.cz E-zdroje
- Klíčová slova
- Western diet, bacteria, cluster of differentiation 1d, experimental colitis, glycolipids, immunology, influenza A virus, invariant natural killer T cells, mass spectrometry, sphingolipids,
- MeSH
- Bacteroides fragilis chemie imunologie MeSH
- dieta * MeSH
- galaktosylceramidy genetika imunologie MeSH
- inbrední kmeny myší MeSH
- myši MeSH
- tlusté střevo imunologie metabolismus mikrobiologie MeSH
- zánět imunologie mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alpha-galactosylceramide MeSH Prohlížeč
- galaktosylceramidy MeSH
The glycosphingolipid, α-galactosylceramide (αGalCer), when presented by CD1d on antigen-presenting cells, efficiently activates invariant natural killer T (iNKT) cells. Thereby, it modulates immune responses against tumors, microbial and viral infections, and autoimmune diseases. Recently, the production of αGalCer by Bacteroidetes from the human gut microbiome was elucidated. Using hydrophilic interaction chromatography coupled to MS2, we screened murine intestinal tracts to identify and quantify αGalCers, and we investigated the αGalCer response to different dietary and physiologic conditions. In both the cecum and the colon of mice, we found 1-15 pmol of αGalCer per milligram of protein; in contrast, mice lacking microbiota (germ-free mice) and fed identical diet did not harbor αGalCer. The identified αGalCer contained a β(R)-hydroxylated hexadecanoyl chain N-linked to C18-sphinganine, which differed from what has been reported with Bacteroides fragilis Unlike β-anomeric structures, but similar to αGalCers from B. fragilis, the synthetic form of the murine αGalCer induced iNKT cell activation in vitro. Last, we observed a decrease in αGalCer production in mice exposed to conditions that alter the composition of the gut microbiota, including Western type diet, colitis, and influenza A virus infection. Collectively, this study suggests that αGalCer is produced by commensals in the mouse intestine and reveals that stressful conditions causing dysbiosis alter its synthesis. The consequences of this altered production on iNKT cell-mediated local and systemic immune responses are worthy of future studies.
Department of Cellular and Molecular Pathology German Cancer Research Center Heidelberg Germany
Division of Virus Associated Carcinogenesis German Cancer Research Center Heidelberg Germany
Faculty of Biosciences University of Heidelberg Heidelberg Germany
Institute of Pharmacology University of Marburg Marburg Germany
Zobrazit více v PubMed
D’Souza M. P., Adams E., Altman J. D., Birnbaum M. E., Boggiano C., Casorati G., Chien Y. H., Conley A., Eckle S. B. G., Fruh K., et al. . 2019. Casting a wider net: immunosurveillance by nonclassical MHC molecules. PLoS Pathog. 15: e1007567. PubMed PMC
Morita M., Motoki K., Akimoto K., Natori T., Sakai T., Sawa E., Yamaji K., Koezuka Y., Kobayashi E., and Fukushima H.. 1995. Structure-activity relationship of alpha-galactosylceramides against B16-bearing mice. J. Med. Chem. 38: 2176–2187. PubMed
Kawano T., Cui J., Koezuka Y., Toura I., Kaneko Y., Motoki K., Ueno H., Nakagawa R., Sato H., Kondo E., et al. . 1997. CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science. 278: 1626–1629. PubMed
Kronenberg M. 2005. Toward an understanding of NKT cell biology: progress and paradoxes. Annu. Rev. Immunol. 23: 877–900. PubMed
Vartabedian V. F., Savage P. B., and Teyton L.. 2016. The processing and presentation of lipids and glycolipids to the immune system. Immunol. Rev. 272: 109–119. PubMed PMC
Natori T., Koezuka Y., and Higa T.. 1993. Agelasphins, novel alpha-galactosylceramides from the marine sponge Agelas mauritianus. Tetrahedron Lett. 34: 5591–5592.
Wieland Brown L. C., Penaranda C., Kashyap P. C., Williams B. B., Clardy J., Kronenberg M., Sonnenburg J. L., Comstock L. E., Bluestone J. A., and Fischbach M. A.. 2013. Production of alpha-galactosylceramide by a prominent member of the human gut microbiota. PLoS Biol. 11: e1001610. PubMed PMC
von Gerichten J., Schlosser K., Lamprecht D., Morace I., Eckhardt M., Wachten D., Jennemann R., Grone H. J., Mack M., and Sandhoff R.. 2017. Diastereomer-specific quantification of bioactive hexosylceramides from bacteria and mammals. J. Lipid Res. 58: 1247–1258. PubMed PMC
An D., Oh S. F., Olszak T., Neves J. F., Avci F. Y., Erturk-Hasdemir D., Lu X., Zeissig S., Blumberg R. S., and Kasper D. L.. 2014. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell. 156: 123–133. PubMed PMC
Rabionet M., Gorgas K., and Sandhoff R.. 2014. Ceramide synthesis in the epidermis. Biochim. Biophys. Acta. 1841: 422–434. PubMed
Kihara A. 2016. Synthesis and degradation pathways, functions, and pathology of ceramides and epidermal acylceramides. Prog. Lipid Res. 63: 50–69. PubMed
Nojima H., Freeman C. M., Gulbins E., and Lentsch A. B.. 2015. Sphingolipids in liver injury, repair and regeneration. Biol. Chem. 396: 633–643. PubMed
Saddoughi S. A., Song P., and Ogretmen B.. 2008. Roles of bioactive sphingolipids in cancer biology and therapeutics. Subcell. Biochem. 49: 413–440. PubMed PMC
Hannun Y. A., and Obeid L. M.. 2008. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 9: 139–150. PubMed
Itokazu Y., Wang J., and Yu R. K.. 2018. Gangliosides in nerve cell specification. Prog. Mol. Biol. Transl. Sci. 156: 241–263. PubMed PMC
Grösch S., Alessenko A. V., and Albi E.. 2018. The many facets of sphingolipids in the specific phases of acute inflammatory response. Mediators Inflamm. 2018: 5378284. PubMed PMC
Sohlenkamp C., and Geiger O.. 2016. Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol. Rev. 40: 133–159. PubMed
Geiger O., Gonzalez-Silva N., Lopez-Lara I. M., and Sohlenkamp C.. 2010. Amino acid-containing membrane lipids in bacteria. Prog. Lipid Res. 49: 46–60. PubMed
Kato M., Muto Y., Tanaka-Bandoh K., Watanabe K., and Ueno K.. 1995. Sphingolipid composition in Bacteroides species. Anaerobe. 1: 135–139. PubMed
Wick E. C., and Sears C. L.. 2010. Bacteroides spp. and diarrhea. Curr. Opin. Infect. Dis. 23: 470–474. PubMed PMC
Rhee K. J., Wu S., Wu X., Huso D. L., Karim B., Franco A. A., Rabizadeh S., Golub J. E., Mathews L. E., Shin J., et al. . 2009. Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wild-type C57BL/6 mice. Infect. Immun. 77: 1708–1718. PubMed PMC
An D., Na C., Bielawski J., Hannun Y. A., and Kasper D. L.. 2011. Membrane sphingolipids as essential molecular signals for Bacteroides survival in the intestine. Proc. Natl. Acad. Sci. USA. 108 (Suppl. 1): 4666–4671. PubMed PMC
Wei Y., Zeng B., Chen J., Cui G., Lu C., Wu W., Yang J., Wei H., Xue R., Bai L., et al. . 2016. Enterogenous bacterial glycolipids are required for the generation of natural killer T cells mediated liver injury. Sci. Rep. 6: 36365. PubMed PMC
Wingender G., Stepniak D., Krebs P., Lin L., McBride S., Wei B., Braun J., Mazmanian S. K., and Kronenberg M.. 2012. Intestinal microbes affect phenotypes and functions of invariant natural killer T cells in mice. Gastroenterology. 143: 418–428. PubMed PMC
Brennan P. J., Cheng T. Y., Pellicci D. G., Watts G. F. M., Veerapen N., Young D. C., Rossjohn J., Besra G. S., Godfrey D. I., Brenner M. B., et al. . 2017. Structural determination of lipid antigens captured at the CD1d-T-cell receptor interface. Proc. Natl. Acad. Sci. USA. 114: 8348–8353. PubMed PMC
Vetere A., Alachraf M. W., Panda S. K., Andersson J. T., and Schrader W.. 2018. Studying the fragmentation mechanism of selected components present in crude oil by collision-induced dissociation mass spectrometry. Rapid Commun. Mass Spectrom. 32: 2141–2151. PubMed
Abbes I., Rihouey C., Hardouin J., Jouenne T., De E., and Alexandre S.. 2018. Identification by mass spectrometry of glucosaminylphosphatidylglycerol, a phosphatidylglycerol derivative, produced by Pseudomonas aeruginosa. Rapid Commun. Mass Spectrom. 32: 2113–2121. PubMed
Rovillos M. J., Pauling J. K., Hannibal-Bach H. K., Vionnet C., Conzelmann A., and Ejsing C. S.. 2016. Structural characterization of suppressor lipids by high-resolution mass spectrometry. Rapid Commun. Mass Spectrom. 30: 2215–2227. PubMed
Jennemann R., Sandhoff R., Langbein L., Kaden S., Rothermel U., Gallala H., Sandhoff K., Wiegandt H., and Grone H. J.. 2007. Integrity and barrier function of the epidermis critically depend on glucosylceramide synthesis. J. Biol. Chem. 282: 3083–3094. PubMed
Sandhoff R., Hepbildikler S. T., Jennemann R., Geyer R., Gieselmann V., Proia R. L., Wiegandt H., and Grone H. J.. 2002. Kidney sulfatides in mouse models of inherited glycosphingolipid disorders: determination by nano-electrospray ionization tandem mass spectrometry. J. Biol. Chem. 277: 20386–20398. PubMed
Eley A., Greenwood D., and O’Grady F.. 1985. Comparative growth of Bacteroides species in various anaerobic culture media. J. Med. Microbiol. 19: 195–201. PubMed
Beshara R., Sencio V., Soulard D., Barthelemy A., Fontaine J., Pinteau T., Deruyter L., Ismail M. B., Paget C., Sirard J. C., et al. . 2018. Alteration of Flt3-Ligand-dependent de novo generation of conventional dendritic cells during influenza infection contributes to respiratory bacterial superinfection. PLoS Pathog. 14: e1007360. PubMed PMC
Hsu F. F. 2016. Complete structural characterization of ceramides as [M-H](-) ions by multiple-stage linear ion trap mass spectrometry. Biochimie. 130: 63–75. PubMed PMC
Paget C., Deng S., Soulard D., Priestman D. A., Speca S., von Gerichten J., Speak A. O., Saroha A., Pewzner-Jung Y., Futerman A. H., et al. . 2019. TLR9-mediated dendritic cell activation uncovers mammalian ganglioside species with specific ceramide backbones that activate invariant natural killer T cells. PLoS Biol. 17: e3000169. PubMed PMC
Harusato A., and Chassaing B.. 2018. Insights on the impact of diet-mediated microbiota alterations on immunity and diseases. Am. J. Transplant. 18: 550–555. PubMed
Lee Y. K. 2013. Effects of diet on gut microbiota profile and the implications for health and disease. Biosci. Microbiota Food Health. 32: 1–12. PubMed PMC
Ley R. E., Backhed F., Turnbaugh P., Lozupone C. A., Knight R. D., and Gordon J. I.. 2005. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA. 102: 11070–11075. PubMed PMC
Tóth G., Murphy R. F., and Lovas S.. 2001. Stabilization of local structures by pi-CH and aromatic-backbone amide interactions involving prolyl and aromatic residues. Protein Eng. 14: 543–547. PubMed
Pinho R. A., Silveira P. C., Silva L. A., Luiz Streck E., Dal-Pizzol F., and Moreira J. C. F.. 2005. N-acetylcysteine and deferoxamine reduce pulmonary oxidative stress and inflammation in rats after coal dust exposure. Environ. Res. 99: 355–360. PubMed
Laroui H., Ingersoll S. A., Liu H. C., Baker M. T., Ayyadurai S., Charania M. A., Laroui F., Yan Y., Sitaraman S. V., and Merlin D.. 2012. Dextran sodium sulfate (DSS) induces colitis in mice by forming nano-lipocomplexes with medium-chain-length fatty acids in the colon. PLoS One. 7: e32084. PubMed PMC
Zhang P., Jiao H., Wang C., Lin Y., and You S.. 2019. Chlorogenic acid ameliorates colitis and alters colonic microbiota in a mouse model of dextran sulfate sodium-induced colitis. Front. Physiol. 10: 325. PubMed PMC
Yildiz S., Mazel-Sanchez B., Kandasamy M., Manicassamy B., and Schmolke M.. 2018. Influenza A virus infection impacts systemic microbiota dynamics and causes quantitative enteric dysbiosis. Microbiome. 6: 9. PubMed PMC
Bartley J. M., Zhou X., Kuchel G. A., Weinstock G. M., and Haynes L.. 2017. Impact of age, caloric restriction, and influenza infection on mouse gut microbiome: an exploratory study of the role of age-related microbiome changes on influenza responses. Front. Immunol. 8: 1164. PubMed PMC
Deriu E., Boxx G. M., He X., Pan C., Benavidez S. D., Cen L., Rozengurt N., Shi W., and Cheng G.. 2016. Influenza virus affects intestinal microbiota and secondary salmonella infection in the gut through type I interferons. PLoS Pathog. 12: e1005572. PubMed PMC
Qin N., Zheng B., Yao J., Guo L., Zuo J., Wu L., Zhou J., Liu L., Guo J., Ni S., et al. . 2015. Influence of H7N9 virus infection and associated treatment on human gut microbiota. Sci. Rep. 5: 14771. PubMed PMC
Wang J., Li F., Wei H., Lian Z. X., Sun R., and Tian Z.. 2014. Respiratory influenza virus infection induces intestinal immune injury via microbiota-mediated Th17 cell-dependent inflammation. J. Exp. Med. 211: 2397–2410. PubMed PMC
Bendelac A., Savage P. B., and Teyton L.. 2007. The biology of NKT cells. Annu. Rev. Immunol. 25: 297–336. PubMed
Ma C., Han M., Heinrich B., Fu Q., Zhang Q., Sandhu M., Agdashian D., Terabe M., Berzofsky J. A., Fako V., et al. . 2018. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science. 360: eaan5931. PubMed PMC
Schramm C. 2018. Bile acids, the microbiome, immunity, and liver tumors. N. Engl. J. Med. 379: 888–890. PubMed
Kumar A., Suryadevara N., Hill T. M., Bezbradica J. S., Van Kaer L., and Joyce S.. 2017. Natural killer T cells: an ecological evolutionary developmental biology perspective. Front. Immunol. 8: 1858. PubMed PMC
Wu D., Xing G. W., Poles M. A., Horowitz A., Kinjo Y., Sullivan B., Bodmer-Narkevitch V., Plettenburg O., Kronenberg M., Tsuji M., et al. . 2005. Bacterial glycolipids and analogs as antigens for CD1d-restricted NKT cells. Proc. Natl. Acad. Sci. USA. 102: 1351–1356. PubMed PMC
Sriram V., Du W., Gervay-Hague J., and Brutkiewicz R. R.. 2005. Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells. Eur. J. Immunol. 35: 1692–1701. PubMed
Kinjo Y., Wu D., Kim G., Xing G. W., Poles M. A., Ho D. D., Tsuji M., Kawahara K., Wong C. H., and Kronenberg M.. 2005. Recognition of bacterial glycosphingolipids by natural killer T cells. Nature. 434: 520–525. PubMed
Mattner J., Debord K. L., Ismail N., Goff R. D., Cantu C. 3rd, Zhou D., Saint-Mezard P., Wang V., Gao Y., Yin N., et al. . 2005. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature. 434: 525–529. PubMed
Sandhoff R., and Sandhoff K.. 2018. Emerging concepts of ganglioside metabolism. FEBS Lett. 592: 3835–3864. PubMed
Kain L., Webb B., Anderson B. L., Deng S., Holt M., Costanzo A., Zhao M., Self K., Teyton A., Everett C., et al. . 2014. The identification of the endogenous ligands of natural killer T cells reveals the presence of mammalian alpha-linked glycosylceramides. Immunity. 41: 543–554. [Erratum. 2014. Immunity. 41: 867.] PubMed PMC
Kain L., Costanzo A., Webb B., Holt M., Bendelac A., Savage P. B., and Teyton L.. 2015. Endogenous ligands of natural killer T cells are alpha-linked glycosylceramides. Mol. Immunol. 68: 94–97. PubMed PMC
Paget C., Mallevaey T., Speak A. O., Torres D., Fontaine J., Sheehan K. C., Capron M., Ryffel B., Faveeuw C., Leite de Moraes M., et al. . 2007. Activation of invariant NKT cells by toll-like receptor 9-stimulated dendritic cells requires type I interferon and charged glycosphingolipids. Immunity. 27: 597–609. PubMed
Brennan P. J., Tatituri R. V., Heiss C., Watts G. F., Hsu F. F., Veerapen N., Cox L. R., Azadi P., Besra G. S., and Brenner M. B.. 2014. Activation of iNKT cells by a distinct constituent of the endogenous glucosylceramide fraction. Proc. Natl. Acad. Sci. USA. 111: 13433–13438. PubMed PMC
Olszak T., An D., Zeissig S., Vera M. P., Richter J., Franke A., Glickman J. N., Siebert R., Baron R. M., Kasper D. L., et al. . 2012. Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 336: 489–493. PubMed PMC
Louis P., Hold G. L., and Flint H. J.. 2014. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 12: 661–672. PubMed
Santos-Marcos J. A., Haro C., Vega-Rojas A., Alcala-Diaz J. F., Molina-Abril H., Leon-Acuna A., Lopez-Moreno J., Landa B. B., Tena-Sempere M., Perez-Martinez P., et al. . 2019. Sex differences in the gut microbiota as potential determinants of gender predisposition to disease. Mol. Nutr. Food Res. 63: e1800870. PubMed
McCarthy C., Shepherd D., Fleire S., Stronge V. S., Koch M., Illarionov P. A., Bossi G., Salio M., Denkberg G., Reddington F., et al. . 2007. The length of lipids bound to human CD1d molecules modulates the affinity of NKT cell TCR and the threshold of NKT cell activation. J. Exp. Med. 204: 1131–1144. PubMed PMC
Goff R. D., Gao Y., Mattner J., Zhou D. P., Yin N., Cantu C., Teyton L., Bendelac A., and Savage P. B.. 2004. Effects of lipid chain lengths in alpha-galactosylceramides on cytokine release by natural killer T cells. J. Am. Chem. Soc. 126: 13602–13603. PubMed
Veerapen N., Kharkwal S. S., Jervis P., Bhowruth V., Besra A. K., North S. J., Haslam S. M., Dell A., Hobrath J., Quaid P. J., et al. . 2018. Photoactivable glycolipid antigens generate stable conjugates with CD1d for invariant natural killer T cell activation. Bioconjug. Chem. 29: 3161–3173. PubMed PMC
Madison K. C., Swartzendruber D. C., Wertz P. W., and Downing D. T.. 1990. Sphingolipid metabolism in organotypic mouse keratinocyte cultures. J. Invest. Dermatol. 95: 657–664. PubMed
Tsugawa H., Ikeda K., Tanaka W., Senoo Y., Arita M., and Arita M.. 2017. Comprehensive identification of sphingolipid species by in silico retention time and tandem mass spectral library. J. Cheminform. 9: 19. PubMed PMC
Turnbaugh P. J., Backhed F., Fulton L., and Gordon J. I.. 2008. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 3: 213–223. PubMed PMC
Fava F., Gitau R., Griffin B. A., Gibson G. R., Tuohy K. M., and Lovegrove J. A.. 2013. The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’ population. Int. J. Obes. (Lond.). 37: 216–223. PubMed
Chu D. M., Antony K. M., Ma J., Prince A. L., Showalter L., Moller M., and Aagaard K. M.. 2016. The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Med. 8: 77. PubMed PMC
Sun M., Du B., Shi Y., Lu Y., Zhou Y., and Liu B.. 2019. Combined signature of the fecal microbiome and plasma metabolome in patients with ulcerative colitis. Med. Sci. Monit. 25: 3303–3315. PubMed PMC
Gevers D., Kugathasan S., Denson L. A., Vazquez-Baeza Y., Van Treuren W., Ren B., Schwager E., Knights D., Song S. J., Yassour M., et al. . 2014. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe. 15: 382–392. PubMed PMC