• This record comes from PubMed

Hospital wastewaters treatment: Fenton reaction vs. BDDE vs. ferrate(VI)

. 2019 Nov ; 26 (31) : 31812-31821. [epub] 20190905

Language English Country Germany Media print-electronic

Document type Journal Article

Grant support
APVV-16- 0171 Agentúra na Podporu Výskumu a Vývoja
APVV-16-0124 Agentúra na Podporu Výskumu a Vývoja
APVV-17-0183 Agentúra na Podporu Výskumu a Vývoja
APVV-17-0119 Agentúra na Podporu Výskumu a Vývoja
VEGA 1/0558/17 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
VEGA 1/0343/19 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
CENAKVA" (LM2018099) Ministerstvo Školství, Mládeže a Tělovýchovy
PROFISH (CZ.02.1.01/0.0/0.0/16_019/0000869) Ministerstvo Školství, Mládeže a Tělovýchovy
(No. CZ.02.1.01/0.0/0.0/16_019/0000845) European Regional Development Fund
TE01020218 Technologická Agentura České Republiky

Links

PubMed 31487008
DOI 10.1007/s11356-019-06290-9
PII: 10.1007/s11356-019-06290-9
Knihovny.cz E-resources

Various types of micropollutants, e.g., pharmaceuticals and their metabolites and resistant strains of pathogenic microorganisms, are usually found in hospital wastewaters. The aim of this paper was to study the presence of 74 frequently used pharmaceuticals, legal and illegal drugs, and antibiotic-resistant bacteria in 5 hospital wastewaters in Slovakia and Czechia and to compare the efficiency of several advanced oxidations processes (AOPs) for sanitation and treatment of such highly polluted wastewaters. The occurrence of micropollutants and antibiotic-resistant bacteria was investigated by in-line SPE-LC-MS/MS technique and cultivation on antibiotic and antibiotic-free selective diagnostic media, respectively. The highest maximum concentrations were found for cotinine (6700 ng/L), bisoprolol (5200 ng/L), metoprolol (2600 ng/L), tramadol (2400 ng/L), sulfamethoxazole (1500 ng/L), and ranitidine (1400 ng/L). In the second part of the study, different advanced oxidation processes, modified Fenton reaction, ferrate(VI), and oxidation by boron-doped diamond electrode were tested in order to eliminate the abovementioned pollutants. Obtained results indicate that the modified Fenton reaction and application of boron-doped diamond electrode were able to eliminate almost the whole spectrum of selected micropollutants with efficiency higher than 90%. All studied methods achieved complete removal of the antibiotic-resistant bacteria present in hospital wastewaters.

Department of Analytical Chemistry Faculty of Natural Sciences Comenius University in Bratislava Mlynská dolina Ilkovičova 6 SK 842 15 Bratislava Slovakia

Department of Inorganic Technology Faculty of Chemical and Food Technology Slovak University of Technology Radlinského 9 812 37 Bratislava Slovakia

Department of Wood Pulp and Paper Institute of Natural and Synthetic Polymers Faculty of Chemical and Food Technology Slovak University of Technology Radlinského 9 812 37 Bratislava Slovakia

Department of Zoology and Fisheries Faculty of Agrobiology Food and Natural Resources Czech University of Life Sciences Prague Kamýcka 129 CZ 165 00 Praha 6 Suchdol Czech Republic

Institute of Chemical and Environmental Engineering Faculty of Chemical and Food Technology Slovak University of Technology Radlinského 9 812 37 Bratislava Slovakia

Institute of Electronics and Photonics Faculty of Electrical Engineering and Information Technology Slovak University of Technology in Bratislava Ilkovičova 3 SK 812 19 Bratislava Slovakia

Institute of Food Science and Nutrition Faculty of Chemical and Food Technology Slovak University of Technology Radlinského 9 812 37 Bratislava Slovakia

Regional Centre of Advanced Technologies and Materials Šlechtitelů 27 CZ 783 71 Olomouc Czech Republic

South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses Faculty of Fisheries and Protection of Waters University of South Bohemia in Ceske Budejovice Zatisi 728 2 CZ 389 01 Vodnany Czech Republic

See more in PubMed

J Environ Manage. 2017 Jun 15;195(Pt 2):216-223 PubMed

Sci Total Environ. 2014 Oct 1;494-495:158-65 PubMed

Int J Food Microbiol. 2011 Dec 2;151(2):223-8 PubMed

Environ Toxicol Pharmacol. 2015 Mar;39(2):483-8 PubMed

Science. 2013 Feb 15;339(6121):814-5 PubMed

Sci Total Environ. 2019 Apr 10;660:751-764 PubMed

Rapid Commun Mass Spectrom. 2013 Aug 15;27(15):1751-62 PubMed

J Chromatogr A. 2013 May 3;1288:63-72 PubMed

Chemosphere. 2018 Feb;193:160-169 PubMed

Sci Total Environ. 2015 May 1;514:467-91 PubMed

Environ Sci Pollut Res Int. 2016 Aug;23(15):15111-21 PubMed

J Hazard Mater. 2005 Jul 15;122(3):211-8 PubMed

J Hazard Mater. 2014 Sep 15;280:579-87 PubMed

Chemosphere. 2010 Oct;81(5):562-70 PubMed

Chemosphere. 2009 Apr;75(4):435-41 PubMed

Environ Sci Pollut Res Int. 2016 Jul;23(13):13003-14 PubMed

Sci Total Environ. 2012 Jul 15;430:109-18 PubMed

Environ Monit Assess. 2015 Mar;187(3):151 PubMed

Chemosphere. 2013 Mar;90(10):2520-5 PubMed

Bull Environ Contam Toxicol. 2013 Aug;91(2):171-6 PubMed

Ecotoxicol Environ Saf. 2019 Apr 15;170:559-567 PubMed

Environ Sci Pollut Res Int. 2018 Sep;25(26):26090-26102 PubMed

Sci Total Environ. 2014 Jan 15;468-469:908-32 PubMed

Sci Total Environ. 2015 Jun 15;518-519:459-78 PubMed

Water Res. 2019 Apr 1;152:171-180 PubMed

Environ Toxicol Pharmacol. 2015 Sep;40(2):492-7 PubMed

Chemosphere. 2014 Sep;111:55-60 PubMed

Environ Int. 2015 Dec;85:61-76 PubMed

Trends Microbiol. 2011 Apr;19(4):184-90 PubMed

J Environ Manage. 2018 Aug 1;219:189-207 PubMed

Environ Sci Pollut Res Int. 2018 Mar;25(7):6095-6106 PubMed

Sci Total Environ. 2014 Jan 15;468-469:415-28 PubMed

Int J Environ Res Public Health. 2016 Jun 14;13(6): PubMed

Sci Total Environ. 2014 Jan 15;468-469:19-27 PubMed

Environ Sci Pollut Res Int. 2019 Jan;26(1):544-558 PubMed

Sci Total Environ. 2016 Jan 1;539:420-426 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...