Cyclic Peptide Stabilized Lead Halide Perovskite Nanoparticles
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31506587
PubMed Central
PMC6736883
DOI
10.1038/s41598-019-49643-7
PII: 10.1038/s41598-019-49643-7
Knihovny.cz E-zdroje
- MeSH
- anorganické látky chemie MeSH
- cyklické peptidy chemie MeSH
- luminiscence * MeSH
- nanočástice chemie MeSH
- olovo chemie MeSH
- oxidy chemie MeSH
- polovodiče * MeSH
- sloučeniny vápníku chemie MeSH
- titan chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- anorganické látky MeSH
- cyklické peptidy MeSH
- olovo MeSH
- oxidy MeSH
- perovskite MeSH Prohlížeč
- sloučeniny vápníku MeSH
- titan MeSH
Combining the unique properties of peptides as versatile tools for nano- and biotechnology with lead halide perovskite nanoparticles can bring exceptional opportunities for the development of optoelectronics, photonics, and bioelectronics. As a first step towards this challenge sub 10 nm methylammonium lead bromide perovskite colloidal nanoparticles have been synthetizes using commercial cyclic peptide Cyclo(RGDFK), containing 5 amino acids, as a surface stabilizer. Perovskite nanoparticles passivated with Cyclo(RGDFK) possess charge transfer from the perovskite core to the peptide shell, resulting in lower photoluminescence quantum yields, which however opens a path for the application where charge transfer is favorable.
Zobrazit více v PubMed
Inostroza-Brito KE, et al. Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein-peptide system. Nat. Chem. 2015;7:897–904. doi: 10.1038/nchem.2349. PubMed DOI
Zhang S. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 2003;21:1171–1178. doi: 10.1038/nbt874. PubMed DOI
Hammond PT. Form and Function in Multilayer Assembly: New Applications at the Nanoscale. Adv. Mater. 2004;15:1271–1293. doi: 10.1002/adma.200400760. DOI
Tang ZY, Wang Y, Podsiadlo P, Kotov NA. Biomedical Applications of Layer by Layer Assembly: From Biomimetics to Tissue Engineering. Adv. Mater. 2006;18:3203–3224. doi: 10.1002/adma.200600113. DOI
Hnilova M, et al. Fabrication of hierarchical hybrid structures using bio enabled layer by layer self assembly. Biotechnol. and Bioeng. 2011;109:1120–1130. doi: 10.1002/bit.24405. PubMed DOI
Sarikaya M, Tamerler C, Jen AK–Y, Schulten K, Baneyx F. Molecular biomimetics: nanotechnology through biology. Nat. Mater. 2003;2:577–585. doi: 10.1038/nmat964. PubMed DOI
Brown S. Metal-recognition by repeating polypeptides. Nat. Biotechnol. 1997;15:269–272. doi: 10.1038/nbt0397-269. PubMed DOI
Whaley SR, English DS, Hu EL, Barbara PF, Belcher AM. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature. 2000;405:665–668. doi: 10.1038/35015043. PubMed DOI
Care A, Bergquist PL, Sunna A. Solid-binding peptides: smart tools for nanobiotechnology. Trends Biotechnol. 2015;33:259–268. doi: 10.1016/j.tibtech.2015.02.005. PubMed DOI
Lakshmanan A, Zhang S, Hauser CAE. Short self-assembling peptides as building blocks for modern nanodevices. Trends in Biotechnol. 2012;30:155–165. doi: 10.1016/j.tibtech.2011.11.001. PubMed DOI
Busseron E, Ruff Y, Moulin E, Giuseppone N. Supramolecular self-assemblies as functional nanomaterials. Nanoscale. 2013;5:7098–7140. doi: 10.1039/c3nr02176a. PubMed DOI
Tao K, Makam P, Aizen R, E. Gazit E. Self-assembling peptide semiconductors. Science. 2017;358:1–7. doi: 10.1126/science.aam9756. PubMed DOI PMC
Amdursky N, Molotskii M, Gazit E, Rosenman G. Elementary Building Blocks of Self-Assembled Peptide Nanotubes. J. Am. Chem. Soc. 2010;132:15632–15636. doi: 10.1021/ja104373e. PubMed DOI
Amdursky N, Gazit E, Rosenman G. Quantum confinement in self-assembled bioinspired peptide hydrogels. Adv. Mater. 2010;22:2311–2315. doi: 10.1002/adma.200904034. PubMed DOI
Tao K, et al. Quantum confined peptide assemblies with tunable visible to near-infrared spectral range. Nat. Commun. 2018;9:3217. doi: 10.1038/s41467-018-05568-9. PubMed DOI PMC
Tombe S, et al. Optical and electronic properties of mixed halide (X = I, Cl, Br) methylammonium lead perovskite solar cells. J. Mater. Chem. C. 2017;5:1714–1723. doi: 10.1039/C6TC04830G. DOI
Green MA, Jiang Y, Soufiani AM, Ho-Baillie A. Optical Properties of Photovoltaic Organic–Inorganic Lead Halide Perovskites. J. Phys. Chem. Lett. 2015;6:4774–4785. doi: 10.1021/acs.jpclett.5b01865. PubMed DOI
Stranks SD, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science. 2013;342:341–344. doi: 10.1126/science.1243982. PubMed DOI
Ball JM, Lee MM, Hey A, Snaith HJ. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 2013;6:1739–1743. doi: 10.1039/c3ee40810h. DOI
Docampo P, Ball JM, Darwich M, Eperon GE, Snaith HJ. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 2013;4:2761. doi: 10.1038/ncomms3761. PubMed DOI
Kim HS, et al. Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nat. Commun. 2013;4:2242. doi: 10.1038/ncomms3242. PubMed DOI
Nie W, et al. Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science. 2015;347:522–525. doi: 10.1126/science.aaa0472. PubMed DOI
Tan Z-K, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014;9:687–692. doi: 10.1038/nnano.2014.149. PubMed DOI
Tombe S, et al. The influence of perovskite precursor composition on the morphology and photovoltaic performance of mixed halide MAPbI3-xClx solar cells. Solar Energy. 2018;163:215–223. doi: 10.1016/j.solener.2018.01.083. DOI
Dou L, et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 2014;5:5404. doi: 10.1038/ncomms6404. PubMed DOI
Zhao Y, Zhu K. Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev. 2016;45:655–689. doi: 10.1039/C4CS00458B. PubMed DOI
Hong K, Le QV, Kim SY, Jang HW. Low-dimensional halide perovskites: review and issues. J. Mater. Chem C. 2018;6:2189. doi: 10.1039/C7TC05658C. DOI
Aharon S, Wierzbowska M, Etgar L. The Effect of the Alkylammonium Ligand’s Length on Organic–Inorganic Perovskite Nanoparticles. ACS Energy Lett. 2018;3:1387–1393. doi: 10.1021/acsenergylett.8b00554. DOI
Bogdanowich-Knipp SJ, Jois DSS, Siahaan TJ. The effect of conformation on the solution stability of linear vs. cyclic RGD peptides. J. Peptide Res. 1999;53:523–529. doi: 10.1034/j.1399-3011.1999.00055.x. PubMed DOI
Zhang F, et al. Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. ACS Nano. 2015;9:4533–4542. doi: 10.1021/acsnano.5b01154. PubMed DOI
Jancik Prochazkova A, et al. ACS Appl. Nano Mater. 2019;2:4267–4274. doi: 10.1021/acsanm.9b00725. DOI
Frisch, M. J., et al. Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT, URL, https://gaussian.com/ (2016).
Wang S, et al. Hybrid organic-inorganic lead bromide perovskite supercrystals self-assembled with L-cysteine and their highly luminescent properties. J. Mater. Chem. C. 2018;6:10994–11001. doi: 10.1039/C8TC03668C. DOI
Wu Y, Li X, Zeng H. Highly Luminescent and Stable Halide Perovskite Nanocrystals. ACS Energy Lett. 2019;4:673–681. doi: 10.1021/acsenergylett.8b02100. DOI
Schmidt LC, et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 2014;136:850–853. doi: 10.1021/ja4109209. PubMed DOI
Hassan Y, et al. Facile Synthesis of Stable and Highly Luminescent Methylammonium Lead Halide Nanocrystals for Efficient Light Emitting Devices. J. Am. Chem. Soc. 2019;141:1269–1279. doi: 10.1021/jacs.8b09706. PubMed DOI
Herz LM. Charge-Carrier Mobilities in Metal Halide Perovskites: Fundamental Mechanisms and Limits. ACS Energy Lett. 2017;2:1539–1548. doi: 10.1021/acsenergylett.7b00276. DOI
Demchyshyn S, et al. Confining metal-halide perovskites in nanoporous thin films. Sci. Adv. 2017;3:1700738. doi: 10.1126/sciadv.1700738. PubMed DOI PMC
Sarritzu V, et al. Perovskite Excitonics: Primary Exciton Creation and Crossover from Free Carriers to a Secondary Exciton Phase. Adv. Opt. Mater. 2018;6:1701254. doi: 10.1002/adom.201701254. DOI
Porrès L, et al. Absolute measurements of photoluminescence quantum yields of solutions using an integrating sphere. J. Fluoresc. 2006;16:267. doi: 10.1007/s10895-005-0054-8. PubMed DOI