An anticancer Os(II) bathophenanthroline complex as a human breast cancer stem cell-selective, mammosphere potent agent that kills cells by necroptosis
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
31527683
PubMed Central
PMC6746710
DOI
10.1038/s41598-019-49774-x
PII: 10.1038/s41598-019-49774-x
Knihovny.cz E-resources
- MeSH
- Apoptosis drug effects MeSH
- Chloroacetates pharmacology MeSH
- Cymenes pharmacology MeSH
- Phenanthrolines pharmacology MeSH
- Coordination Complexes pharmacology MeSH
- Humans MeSH
- Neoplasm Recurrence, Local pathology MeSH
- Cell Line, Tumor MeSH
- Neoplastic Stem Cells drug effects metabolism MeSH
- Tumor Microenvironment drug effects MeSH
- Breast Neoplasms drug therapy pathology MeSH
- Necroptosis drug effects MeSH
- Necrosis metabolism MeSH
- Organoplatinum Compounds pharmacology MeSH
- Osmium pharmacology MeSH
- Cell Proliferation drug effects MeSH
- Antineoplastic Agents pharmacology MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 4-cymene MeSH Browser
- bathophenanthroline MeSH Browser
- Chloroacetates MeSH
- Cymenes MeSH
- diammine(dichloroacetato)platinum(II) MeSH Browser
- Phenanthrolines MeSH
- Coordination Complexes MeSH
- Organoplatinum Compounds MeSH
- Osmium MeSH
- Antineoplastic Agents MeSH
Conventional chemotherapy is mostly effective in the treatment of rapidly-dividing differentiated tumor cells but has limited application toward eliminating cancer stem cell (CSC) population. The presence of a very small number of CSCs may contribute to the development of therapeutic resistance, metastases, and relapse. Thus, treatment failure by developing novel anticancer drugs capable of effective targeting of CSCs is at present a major challenge for research focused on chemotherapy of cancer. Here, we show that Os(II) complex 2 [Os(η6-pcym)(bphen)(dca)]PF6 (pcym = p-cymene, bphen = bathophenanthroline, and dca = dichloroacetate), is capable of efficient and selective killing CSCs in heterogeneous populations of human breast cancer cells MCF-7 and SKBR-3. Notably, its remarkable submicromolar potency to kill CSCs is considerably higher than that of its Ru analog, [Ru(η6-pcym)(bphen)(dca)]PF6 (complex 1) and salinomycin, one of the most selective CSC-targeting compounds hitherto identified. Furthermore, Os(II) complex 2 reduces the formation, size, and viability of three-dimensional mammospheres which more closely reflect the tumor microenvironment than cells in traditional two-dimensional cultures. The antiproliferation studies and propidium iodide staining using flow cytometry suggest that Os(II) complex 2 induces human breast cancer stem cell death predominantly by necroptosis, a programmed form of necrosis. The results of this study demonstrate the promise of Os(II) complex 2 in treating human breast tumors. They also represent the foundation for further preclinical and clinical studies and applications of Os(II) complex 2 to comply with the emergent need for human breast CSCs-specific chemotherapeutics capable to treat chemotherapy-resistant and relapsed human breast tumors.
See more in PubMed
Shen H, Laird PW. Interplay between the cancer genome and epigenome. Cell. 2013;153:38–55. doi: 10.1016/j.cell.2013.03.008. PubMed DOI PMC
Christophersen NS, Helin K. Epigenetic control of embryonic stem cell fate. J. Exp. Med. 2010;207:2287–2295. doi: 10.1084/jem.20101438. PubMed DOI PMC
Kuhlmann JD, Hein L, Kurth I, Wimberger P, Dubrovska A. Targeting cancer stem cells: Promises and challenges. Anti-Cancer Agents Med. Chem. 2015;16:38–58. doi: 10.2174/1871520615666150716104152. PubMed DOI
Cheung SKC, et al. Stage-specific embryonic antigen-3 (SSEA-3) and β3GalT5 are cancer specific and significant markers for breast cancer stem cells. Proc. Natl. Acad. Sci. USA. 2016;113:960–965. doi: 10.1073/pnas.1522602113. PubMed DOI PMC
Park J-H, Chung S, Matsuo Y, Nakamura Y. Development of small molecular compounds targeting cancer stem cells. MedChemComm. 2017;8:73–80. doi: 10.1039/C6MD00385K. PubMed DOI PMC
Laws K, Suntharalingam K. The next generation of anticancer metallopharmaceuticals: cancer stem cell-active inorganics. ChemBioChem. 2018;19:2246–2253. doi: 10.1002/cbic.201800358. PubMed DOI
Miklášová N, et al. Antiproliferative effect of novel platinum(II) and palladium(II) complexes on hepatic tumor stem cells in vitro. Eur. J. Med. Chem. 2012;49:41–47. doi: 10.1016/j.ejmech.2011.12.001. PubMed DOI
Suntharalingam K, et al. A breast cancer stem cell-selective, mammospheres-potent osmium(VI) nitrido complex. J. Am. Chem. Soc. 2014;136:14413–14416. doi: 10.1021/ja508808v. PubMed DOI PMC
Štarha P, Trávníček Z, Vančo J, Dvořák Z. Half-sandwich Ru(II) and Os(II) bathophenanthroline complexes containing a releasable dichloroacetato ligand. Molecules. 2018;23:420. doi: 10.3390/molecules23020420. PubMed DOI PMC
Pracharova J, et al. Half-sandwich Os(II) and Ru(II) bathophenanthroline complexes: anticancer drug candidates with unusual potency and cellular activity profile in highly invasive triple-negative breast cancer cells. Dalton Trans. 2018;47:12197–12208. doi: 10.1039/C8DT02236D. PubMed DOI
Naujokat C, Steinhart R. Salinomycin as a drug for targeting human cancer stem cells. J. Biomed. Biotechnol. 2012;2012:1–17. doi: 10.1155/2012/950658. PubMed DOI PMC
Zhou S, et al. Salinomycin: A novel anti-cancer agent with known anti-coccidial activities. Curr. Med. Chem. 2013;20:4095–4101. doi: 10.2174/15672050113109990199. PubMed DOI PMC
Gupta PB, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138:645–659. doi: 10.1016/j.cell.2009.06.034. PubMed DOI PMC
Fillmore, C. M. & Kuperwasser, C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res. 10 (2008). PubMed PMC
Lu C, Eskandari A, Cressey PB, Suntharalingam K. Cancer stem cell and bulk cancer cell active copper(II) complexes with vanillin Schiff base derivatives and naproxen. Chem. Eur. J. 2017;23:11366–11374. doi: 10.1002/chem.201701939. PubMed DOI
Ponti D, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 2005;65:5506–5511. doi: 10.1158/0008-5472.CAN-05-0626. PubMed DOI
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA. 2003;100:3983–3988. doi: 10.1073/pnas.0530291100. PubMed DOI PMC
Liu S, Wicha MS. Targeting breast cancer stem cells. J. Clin. Oncol. 2010;28:4006–4012. doi: 10.1200/JCO.2009.27.5388. PubMed DOI PMC
Dontu G, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003;17:1253–1270. doi: 10.1101/gad.1061803. PubMed DOI PMC
Crouch SPM, Kozlowski R, Slater KJ, Fletcher J. The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J. Immunol. Methods. 1993;160:81–88. doi: 10.1016/0022-1759(93)90011-U. PubMed DOI
Iglesias JM, et al. Mammosphere formation in breast carcinoma cell lines depends upon expression of E-cadherin. PLoS ONE. 2013;8:e77281. doi: 10.1371/journal.pone.0077281. PubMed DOI PMC
Boodram JN, et al. Breast cancer stem cell potent copper(II)–non-steroidal anti-inflammatory drug complexes. Angew. Chem. Int. Ed. 2016;55:2845–2850. doi: 10.1002/anie.201510443. PubMed DOI
Marcato P, et al. Aldehyde dehydrogenase activity of breast cancer stem cells is primarily due to isoform ALDH1A3 and its expression is predictive of metastasis. Stem Cells. 2011;29:32–45. doi: 10.1002/stem.563. PubMed DOI
Ginestier C, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–567. doi: 10.1016/j.stem.2007.08.014. PubMed DOI PMC
Ginestier C, et al. Retinoid signaling regulates breast cancer stem cell differentiation. Cell Cycle. 2009;8:3297–3302. doi: 10.4161/cc.8.20.9761. PubMed DOI PMC
Balvan J, et al. Multimodal holographic microscopy: Distinction between apoptosis and oncosis. PlosOne. 2015;10:e0121674. doi: 10.1371/journal.pone.0121674. PubMed DOI PMC
Van Cruchten S, Van den Broeck W. Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anatomia, Histologia, Embryologia. 2002;31:214–223. doi: 10.1046/j.1439-0264.2002.00398.x. PubMed DOI
Cooley-Andrade O, Goh WX, Connor DE, Ma DDF, Parsi K. Detergent sclerosants stimulate leukocyte apoptosis and oncosis. Eur. J. Vascul. Endovascul. Surg. 2016;51:846–856. doi: 10.1016/j.ejvs.2016.03.008. PubMed DOI
Weerasinghe P, Hallock S, Brown RE, Loose DS, Buja LM. A model for cardiomyocyte cell death: Insights into mechanisms of oncosis. Exp. Mol. Pathol. 2013;94:289–300. doi: 10.1016/j.yexmp.2012.04.022. PubMed DOI
Flamme M, et al. Induction of necroptosis in cancer stem cells using a nickel(II)-dithiocarbamate phenanthroline complex. Chem. Eur. J. 2017;23:9674–9682. doi: 10.1002/chem.201701837. PubMed DOI
Zhang CG, Xu YH, Gu JJ, Schlossman SF. A cell surface receptor defined by a mAb mediates a unique type of cell death similar to oncosis. Proc. Natl. Acad. Sci. USA. 1998;95:6290–6295. doi: 10.1073/pnas.95.11.6290. PubMed DOI PMC
Liu LF, et al. Effect of melatonin on oncosis of myocardial cells in the myocardial ischemia/reperfusion injury rat and the role of the mitochondrial permeability transition pore. Genet. Mol. Res. 2015;14:7481–7489. doi: 10.4238/2015.July.3.24. PubMed DOI
Ma FR, Zhang CH, Prasad KVS, Freeman GJ, Schlossman SF. Molecular cloning of Porimin, a novel cell surface receptor mediating oncotic cell death. Proc. Natl. Acad. Sci. USA. 2001;98:9778–9783. doi: 10.1073/pnas.171322898. PubMed DOI PMC
Ros U, et al. Necroptosis execution is mediated by plasma membrane nanopores independent of calcium. Cell Rep. 2017;19:175–187. doi: 10.1016/j.celrep.2017.03.024. PubMed DOI PMC
Cai Z, et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nature Cell Biol. 2013;16:55. doi: 10.1038/ncb2883. PubMed DOI PMC
Dodo K, Katoh M, Shimizu T, Takahashi M, Sodeoka M. Inhibition of hydrogen peroxide-induced necrotic cell death with 3-amino-2-indolylmaleimide derivatives. Bioorg. Med. Chem. Lett. 2005;15:3114–3118. doi: 10.1016/j.bmcl.2005.04.016. PubMed DOI
Degterev A, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nature Chem. Biol. 2008;4:313–321. doi: 10.1038/nchembio.83. PubMed DOI PMC
Li J-X, Feng J-M, Wang Y, Li X-H, Chen X-X, Su Y, Shen Y-Y, Chen Y, Xiong B, Yang C-H, Ding J, Miao Z-H. The B-RafV600E inhibitor dabrafenib selectively inhibits RIP3 and alleviates acetaminophen-induced liver injury. Cell Death & Disease. 2014;5(6):e1278–e1278. doi: 10.1038/cddis.2014.241. PubMed DOI PMC
Sun LM, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 2012;148:213–227. doi: 10.1016/j.cell.2011.11.031. PubMed DOI
Wang HY, et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell. 2014;54:133–146. doi: 10.1016/j.molcel.2014.03.003. PubMed DOI
Starha P, Travnicek Z, Herchel R, Jewula P, Dvorak Z. A potential method to improve the in vitro cytotoxicity of half-sandwich Os(II) complexes against A2780 cells. Dalton Trans. 2018;47:5714–5724. doi: 10.1039/C8DT00193F. PubMed DOI
Pacini N, Borziani F. Cancer stem cell theory and the Warburg effect, two sides of the same coin? Int. J. Mol. Sci. 2014;15:8893. doi: 10.3390/ijms15058893. PubMed DOI PMC
Chemistry towards Biology-Instruct: Snapshot