Are Migraine With and Without Aura Really Different Entities?

. 2019 ; 10 () : 982. [epub] 20191002

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31632329

Background: Migraine research is booming with the rapidly developing neuroimaging tools. Structural and functional alterations of the migrainous brain were detected with MRI. The outcome of a research study largely depends on the working hypothesis, on the chosen measurement approach and also on the subject selection. Against all evidence from the literature that migraine subtypes are different, most of the studies handle migraine with and without aura as one disease. Methods: Publications from PubMed database were searched for terms of "migraine with aura," "migraine without aura," "interictal," "MRI," "diffusion weighted MRI," "functional MRI," "compared to," "atrophy" alone and in combination. Conclusion: Only a few imaging studies compared the two subforms of the disease, migraine with aura, and without aura, directly. Functional imaging investigations largely agree that there is an increased activity/activation of the brain in migraine with aura as compared to migraine without aura. We propose that this might be the signature of cortical hyperexcitability. However, structural investigations are not equivocal. We propose that variable contribution of parallel, competing mechanisms of maladaptive plasticity and neurodegeneration might be the reason behind the variable results.

Zobrazit více v PubMed

Lipton RB, Bigal ME. Migraine: epidemiology, impact, and risk factors for progression. Headache. (2005) 45(Suppl. 1):S3–13. 10.1111/j.1526-4610.2005.4501001.x PubMed DOI

Disease GBD, Injury I, Prevalence C. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. (2016) 388:1545–602. 10.1016/S0140-6736(16)31678-6 PubMed DOI PMC

Lauritzen M. Pathophysiology of the migraine aura. The spreading depression theory. Brain. (1994) 117:199–210. 10.1093/brain/117.1.199 PubMed DOI

Headache classification committee of the International Headache Society (IHS) the International Classification of Headache Disorders 3rd edition Cephalalgia. (2018) 38:1–211. 10.1177/0333102417738202 PubMed DOI

Zhao H, Eising E, de Vries B, Vijfhuizen LS, International Headache Genetics C, Anttila V, et al. . Gene-based pleiotropy across migraine with aura and migraine without aura patient groups. Cephalalgia. (2016) 36:648–57. 10.1177/0333102415591497 PubMed DOI PMC

Ranson R, Igarashi H, MacGregor EA, Wilkinson M. The similarities and differences of migraine with aura and migraine without aura: a preliminary study. Cephalalgia. (1991) 11:189–92. 10.1046/j.1468-2982.1991.1104189.x PubMed DOI

Manzoni GC, Torelli P. Migraine with and without aura: a single entity? Neurol Sci. (2008) 29(Suppl 1):S40–3. 10.1007/s10072-008-0884-7 PubMed DOI

Szabó N, Farago P, Kiraly A, Vereb D, Csete G, Toth E, et al. . Evidence for plastic processes in migraine with aura: a diffusion weighted MRI study. Front Neuroanat. (2017) 11:138. 10.3389/fnana.2017.00138 PubMed DOI PMC

Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci. (2005) 360:1001–13. 10.1098/rstb.2005.1634 PubMed DOI PMC

Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M. Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci USA. (2007) 104:13170–5. 10.1073/pnas.0700668104 PubMed DOI PMC

Datta R, Aguirre GK, Hu S, Detre JA, Cucchiara B. Interictal cortical hyperresponsiveness in migraine is directly related to the presence of aura. Cephalalgia. (2013) 33:365–74. 10.1177/0333102412474503 PubMed DOI PMC

Cucchiara B, Datta R, Aguirre GK, Idoko KE, Detre J. Measurement of visual sensitivity in migraine: validation of two scales and correlation with visual cortex activation. Cephalalgia. (2015) 35:585–92. 10.1177/0333102414547782 PubMed DOI

Tedeschi G, Russo A, Conte F, Corbo D, Caiazzo G, Giordano A, et al. . Increased interictal visual network connectivity in patients with migraine with aura. Cephalalgia. (2016) 36:139–47. 10.1177/0333102415584360 PubMed DOI

Farago P, Tuka B, Toth E, Szabo N, Kiraly A, Csete G, et al. . Interictal brain activity differs in migraine with and without aura: resting state fMRI study. J Headache Pain. (2017) 18:8. 10.1186/s10194-016-0716-8 PubMed DOI PMC

Niddam DM, Lai KL, Fuh JL, Chuang CY, Chen WT, Wang SJ. Reduced functional connectivity between salience and visual networks in migraine with aura. Cephalalgia. (2016) 36:53–66. 10.1177/0333102415583144 PubMed DOI

Lo Buono V, Bonanno L, Corallo F, Pisani LR, Lo Presti R, Grugno R, et al. . Functional connectivity and cognitive impairment in migraine with and without aura. J Headache Pain. (2017) 18:72. 10.1186/s10194-017-0782-6 PubMed DOI PMC

May A. Pearls and pitfalls: neuroimaging in headache. Cephalalgia. (2013) 33:554–65. 10.1177/0333102412467513 PubMed DOI

Granziera C, DaSilva AF, Snyder J, Tuch DS, Hadjikhani N. Anatomical alterations of the visual motion processing network in migraine with and without aura. PLoS Med. (2006) 3:e402. 10.1371/journal.pmed.0030402 PubMed DOI PMC

Magon S, May A, Stankewitz A, Goadsby PJ, Schankin C, Ashina M, et al. . Cortical abnormalities in episodic migraine: a multi-center 3T MRI study. Cephalalgia. (2019) 39:665–73. 10.1177/0333102418795163 PubMed DOI

Beaulieu C. The basis of anisotropic water diffusion in the nervous system–a technical review. NMR Biomed. (2002) 15:435–55. 10.1002/nbm.782 PubMed DOI

DaSilva AF, Granziera C, Tuch DS, Snyder J, Vincent M, Hadjikhani N. Interictal alterations of the trigeminal somatosensory pathway and periaqueductal gray matter in migraine. Neuroreport. (2007) 18:301–5. 10.1097/WNR.0b013e32801776bb PubMed DOI PMC

Tessitore A, Russo A, Conte F, Giordano A, De Stefano M, Lavorgna L, et al. . Abnormal connectivity within executive resting-state network in migraine with aura. Headache. (2015). 55:794–805. 10.1111/head.12587 PubMed DOI

Leao A. Spreading depression of activity in the cerebral cortex. J Neurophysiol. (1944) 7:359–90. 10.1152/jn.1944.7.6.359 PubMed DOI

Hadjikhani N, Sanchez Del Rio M, Wu O, Schwartz D, Bakker D, Fischl B, et al. . Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci USA. (2001) 98:4687–92. 10.1073/pnas.071582498 PubMed DOI PMC

Moskowitz MA, Macfarlane R. Neurovascular and molecular mechanisms in migraine headaches. Cerebrovasc Brain Metab Rev. (1993) 5:159–77. PubMed

Moskowitz MA, Nozaki K, Kraig RP. Neocortical spreading depression provokes the expression of c-fos protein-like immunoreactivity within trigeminal nucleus caudalis via trigeminovascular mechanisms. J Neurosci. (1993) 13:1167–77. 10.1523/JNEUROSCI.13-03-01167.1993 PubMed DOI PMC

Connolly JF, Gawel M, Rose FC. Migraine patients exhibit abnormalities in the visual evoked potential. J Neurol Neurosurg Psychiatry. (1982) 45:464–7. 10.1136/jnnp.45.5.464 PubMed DOI PMC

Gawel M, Connolly JF, Rose FC. Migraine patients exhibit abnormalities in the visual evoked potential. Headache. (1983) 23:49–52. 10.1111/j.1526-4610.1983.hed2302049.x PubMed DOI

Diener HC, Scholz E, Dichgans J, Gerber WD, Jack A, Bille A, et al. . Central effects of drugs used in migraine prophylaxis evaluated by visual evoked potentials. Ann Neurol. (1989) 25:125–30. 10.1002/ana.410250204 PubMed DOI

Oelkers R, Grosser K, Lang E, Geisslinger G, Kobal G, Brune K, et al. . Visual evoked potentials in migraine patients: alterations depend on pattern spatial frequency. Brain. (1999) 122:1147–55. 10.1093/brain/122.6.1147 PubMed DOI

Sand T, Zhitniy N, White LR, Stovner LJ. Visual evoked potential latency, amplitude and habituation in migraine: a longitudinal study. Clin Neurophysiol. (2008) 119:1020–7. 10.1016/j.clinph.2008.01.009 PubMed DOI

Coppola G, Bracaglia M, Di Lenola D, Di Lorenzo C, Serrao M, Parisi V, et al. . Visual evoked potentials in subgroups of migraine with aura patients. J Headache Pain. (2015) 16:92. 10.1186/s10194-015-0577-6 PubMed DOI PMC

Aurora SK, Ahmad BK, Welch KM, Bhardhwaj P, Ramadan NM. Transcranial magnetic stimulation confirms hyperexcitability of occipital cortex in migraine. Neurology. (1998) 50:1111–4. 10.1212/WNL.50.4.1111 PubMed DOI

Brigo F, Storti M, Tezzon F, Manganotti P, Nardone R. Primary visual cortex excitability in migraine: a systematic review with meta-analysis. Neurol Sci. (2013) 34:819–30. 10.1007/s10072-012-1274-8 PubMed DOI

Brighina F, Bolognini N, Cosentino G, Maccora S, Paladino P, Baschi R, et al. . Visual cortex hyperexcitability in migraine in response to sound-induced flash illusions. Neurology. (2015) 84:2057–61. 10.1212/WNL.0000000000001584 PubMed DOI

Younis S, Hougaard A, Vestergaard MB, Larsson HBW, Ashina M. Migraine and magnetic resonance spectroscopy: a systematic review. Curr Opin Neurol. (2017) 30:246–62. 10.1097/WCO.0000000000000436 PubMed DOI

Tajti J, Szok D, Nagy-Grocz G, Tuka B, Petrovics-Balog A, Toldi J, et al. . Kynurenines and PACAP in migraine: medicinal chemistry and pathogenetic aspects. Curr Med Chem. (2017) 24:1332–49. 10.2174/0929867324666170227115019 PubMed DOI

Bindman LJ, Lippold OC, Redfearn JW. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol. (1964) 172:369–82. 10.1113/jphysiol.1964.sp007425 PubMed DOI PMC

Wolf ME, Jäger T, Bäzner H, Hennerici M. Changes in functional vasomotor reactivity in migraine with aura. Cephalalgia. (2009) 29:1156–64. 10.1111/j.1468-2982.2009.01843.x PubMed DOI

Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A. Neuroplasticity: changes in grey matter induced by training. Nature. (2004) 427:311–2. 10.1038/427311a PubMed DOI

Boyke J, Driemeyer J, Gaser C, Buchel C, May A. Training-induced brain structure changes in the elderly. J Neurosci. (2008) 28:7031–5. 10.1523/JNEUROSCI.0742-08.2008 PubMed DOI PMC

Scholz J, Klein MC, Behrens TE, Johansen-Berg H. Training induces changes in white-matter architecture. Nat Neurosci. (2009) 12:1370–1. 10.1038/nn.2412 PubMed DOI PMC

Teutsch S, Herken W, Bingel U, Schoell E, May A. Changes in brain gray matter due to repetitive painful stimulation. Neuroimage. (2008) 42:845–9. 10.1016/j.neuroimage.2008.05.044 PubMed DOI

Dehbandi S, Speckmann EJ, Pape HC, Gorji A. Cortical spreading depression modulates synaptic transmission of the rat lateral amygdala. Eur J Neurosci. (2008) 27:2057–65. 10.1111/j.1460-9568.2008.06188.x PubMed DOI

Haghir H, Kovac S, Speckmann EJ, Zilles K, Gorji A. Patterns of neurotransmitter receptor distributions following cortical spreading depression. Neuroscience. (2009) 163:1340–52. 10.1016/j.neuroscience.2009.07.067 PubMed DOI

Moskowitz MA. Pathophysiology of headache–past and present. Headache. (2007) 47(Suppl 1):S58–63. 10.1111/j.1526-4610.2007.00678.x PubMed DOI

Arnold G, Reuter U, Kinze S, Wolf T, Einhaupl KM. Migraine with aura shows gadolinium enhancement which is reversed following prophylactic treatment. Cephalalgia. (1998) 18:644–6. 10.1046/j.1468-2982.1998.1809644.x PubMed DOI

Knotkova H, Pappagallo M. Imaging intracranial plasma extravasation in a migraine patient: a case report. Pain Med. (2007) 8:383–7. 10.1111/j.1526-4637.2006.00197.x PubMed DOI

Cui Y, Takashima T, Takashima-Hirano M, Wada Y, Shukuri M, Tamura Y, et al. . 11C-PK11195 PET for the in vivo evaluation of neuroinflammation in the rat brain after cortical spreading depression. J Nucl Med. (2009) 50:1904–11. 10.2967/jnumed.109.066498 PubMed DOI

D'Andrea G, Cananzi AR, Joseph R, Morra M, Zamberlan F, Ferro Milone F, et al. . Platelet glycine, glutamate and aspartate in primary headache. Cephalalgia. (1991) 11:197–200. 10.1046/j.1468-2982.1991.1104197.x PubMed DOI

Longoni M, Ferrarese C. Inflammation and excitotoxicity: role in migraine pathogenesis. Neurol Sci. (2006) 27(Suppl 2):S107–10. 10.1007/s10072-006-0582-2 PubMed DOI

Gursoy-Ozdemir Y, Qiu J, Matsuoka N, Bolay H, Bermpohl D, Jin H, et al. . Cortical spreading depression activates and upregulates MMP-9. J Clin Invest. (2004) 113:1447–55. 10.1172/JCI200421227 PubMed DOI PMC

Bernecker C, Pailer S, Kieslinger P, Horejsi R, Moller R, Lechner A, et al. . Increased matrix metalloproteinase activity is associated with migraine and migraine-related metabolic dysfunctions. Eur J Neurol. (2010) 18:571–6. 10.1111/j.1468-1331.2010.03205.x PubMed DOI

Gupta VK. CSD, BBB and MMP-9 elevations: animal experiments versus clinical phenomena in migraine. Expert Rev Neurother. (2009) 9:1595–614. 10.1586/ern.09.103 PubMed DOI

Yilmaz N, Karaali K, Ozdem S, Turkay M, Unal A, Dora B. Elevated S100B and neuron specific enolase levels in patients with migraine-without aura: evidence for neurodegeneration? Cell Mol Neurobiol. (2011) 31:579–85. 10.1007/s10571-011-9651-z PubMed DOI PMC

Pisanu C, Preisig M, Castelao E, Glaus J, Pistis G, Squassina A, et al. . A genetic risk score is differentially associated with migraine with and without aura. Hum Genet. (2017) 136:999–1008. 10.1007/s00439-017-1816-5 PubMed DOI PMC

Yang MH, Yang FY, Oyang YJ. Application of density estimation algorithms in analyzing co-morbidities of migraine. Netw Model Anal Health Inform Bioinform. (2013) 2:95–107. 10.1007/s13721-013-0028-8 PubMed DOI PMC

Roos-Araujo D, Stuart S, Lea RA, Haupt LM, Griffiths LR. Epigenetics and migraine; complex mitochondrial interactions contributing to disease susceptibility. Gene. (2014) 543:1–7. 10.1016/j.gene.2014.04.001 PubMed DOI

Knyihar-Csillik E, Tajti J, Mohtasham S, Sari G, Vecsei L. Electrical stimulation of the Gasserian ganglion induces structural alterations of calcitonin gene-related peptide-immunoreactive perivascular sensory nerve terminals in the rat cerebral dura mater: a possible model of migraine headache. Neurosci Lett. (1995) 184:189–92. 10.1016/0304-3940(94)11203-U PubMed DOI

Knyihar-Csillik E, Tajti J, Chadaide Z, Csillik B, Vecsei L. Functional immunohistochemistry of neuropeptides and nitric oxide synthase in the nerve fibers of the supratentorial dura mater in an experimental migraine model. Microsc Res Tech. (2001) 53:193–211. 10.1002/jemt.1084 PubMed DOI

Knyihar-Csillik E, Chadaide Z, Okuno E, Krisztin-Peva B, Toldi J, Varga C, et al. . Kynurenine aminotransferase in the supratentorial dura mater of the rat: effect of stimulation of the trigeminal ganglion. Exp Neurol. (2004) 186:242–7. 10.1016/j.expneurol.2003.12.001 PubMed DOI

Villalon CM, Olesen J. The role of CGRP in the pathophysiology of migraine and efficacy of CGRP receptor antagonists as acute antimigraine drugs. Pharmacol Ther. (2009) 124:309–23. 10.1016/j.pharmthera.2009.09.003 PubMed DOI

Olesen J. Calcitonin gene-related peptide. (CGRP) in migraine. Cephalalgia. (2010). 10.1177/0333102410388438 PubMed DOI

Tajti J, Pardutz A, Vamos E, Tuka B, Kuris A, Bohar Z, et al. . Migraine is a neuronal disease. J Neural Transm. (2010) 118:511–24. 10.1007/s00702-010-0515-3 PubMed DOI

Tuka B, Helyes Z, Markovics A, Bagoly T, Nemeth J, Mark L, et al. . Peripheral and central alterations of pituitary adenylate cyclase activating polypeptide-like immunoreactivity in the rat in response to activation of the trigeminovascular system. Peptides. (2012) 33:307–16. 10.1016/j.peptides.2011.12.019 PubMed DOI

Akerman S, Goadsby PJ. Neuronal PAC1 receptors mediate delayed activation and sensitization of trigeminocervical neurons: Relevance to migraine. Sci Transl Med. (2015) 7:308ra157. 10.1126/scitranslmed.aaa7557 PubMed DOI

Tozzi A, de Iure A, Di Filippo M, Costa C, Caproni S, Pisani A, et al. . Critical role of calcitonin gene-related peptide receptors in cortical spreading depression. Proc Natl Acad Sci USA. (2012) 109:18985–90. 10.1073/pnas.1215435109 PubMed DOI PMC

Chan KY, Labastida-Ramirez A, Ramirez-Rosas MB, Labruijere S, Garrelds IM, Danser AH, et al. . Trigeminovascular calcitonin gene-related peptide function in Cacna1a R192Q-mutated knock-in mice. J Cereb Blood Flow Metab. (2017) 39:718–29. 10.1177/0271678X17725673 PubMed DOI PMC

Tuka B, Helyes Z, Markovics A, Bagoly T, Szolcsanyi J, Szabo N, et al. . Alterations in PACAP-38-like immunoreactivity in the plasma during ictal and interictal periods of migraine patients. Cephalalgia. (2013) 33:1085–95. 10.1177/0333102413483931 PubMed DOI

Vereb D, Szabo N, Tuka B, Tajti J, Kiraly A, Farago P, et al. . Correlation of neurochemical and imaging markers in migraine: PACAP38 and DTI measures. Neurology. (2018) 91:e1166–74. 10.1212/WNL.0000000000006201 PubMed DOI

Dalkara T, Zervas NT, Moskowitz MA. From spreading depression to the trigeminovascular system. Neurol Sci. (2006) 27(Suppl 2):S86–90. 10.1007/s10072-006-0577-z PubMed DOI

Charles A. Migraine: a brain state. Curr Opin Neurol. (2013) 26:235–9. 10.1097/WCO.0b013e32836085f4 PubMed DOI

Jürgens TP, Schulte LH, May A. Migraine trait symptoms in migraine with and without aura. Neurology. (2014) 82:1416–24. 10.1212/WNL.0000000000000337 PubMed DOI

Fazekas F, Koch M, Schmidt R, Offenbacher H, Payer F, Freidl W, et al. . The prevalence of cerebral damage varies with migraine type: a MRI study. Headache. (1992) 32:287–91. 10.1111/j.1526-4610.1992.hed3206287.x PubMed DOI

Pavese N, Canapicchi R, Nuti A, Bibbiani F, Lucetti C, Collavoli P, et al. . White matter MRI hyperintensities in a hundred and twenty-nine consecutive migraine patients. Cephalalgia. (1994) 14:342–5. 10.1046/j.1468-2982.1994.1405342.x PubMed DOI

Porter A, Gladstone JP, Dodick DW. Migraine and white matter hyperintensities. Curr Pain Headache Rep. (2005) 9:289–93. 10.1007/s11916-005-0039-y PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...