• This record comes from PubMed

Molecular Links between Central Obesity and Breast Cancer

. 2019 Oct 28 ; 20 (21) : . [epub] 20191028

Language English Country Switzerland Media electronic

Document type Journal Article, Review

: Worldwide, breast cancer (BC) is the most common malignancy in women, in regard to incidence and mortality. In recent years, the negative role of obesity during BC development and progression has been made abundantly clear in several studies. However, the distribution of body fat may be more important to analyze than the overall body weight. In our review of literature, we reported some key findings regarding the role of obesity in BC development, but focused more on central adiposity. Firstly, the adipose microenvironment in obese people bears many similarities with the tumor microenvironment, in respect to associated cellular composition, chronic low-grade inflammation, and high ratio of reactive oxygen species to antioxidants. Secondly, the adipose tissue functions as an endocrine organ, which in obese people produces a high level of tumor-promoting hormones, such as leptin and estrogen, and a low level of the tumor suppressor hormone, adiponectin. As follows, in BC this leads to the activation of oncogenic signaling pathways: NFκB, JAK, STAT3, AKT. Moreover, overall obesity, but especially central obesity, promotes a systemic and local low grade chronic inflammation that further stimulates the increase of tumor-promoting oxidative stress. Lastly, there is a constant exchange of information between BC cells and adipocytes, mediated especially by extracellular vesicles, and which changes the transcription profile of both cell types to an oncogenic one with the help of regulatory non-coding RNAs.

See more in PubMed

Shah R., Rosso K., Nathanson S.D. Pathogenesis, prevention, diagnosis and treatment of breast cancer. World J. Clin. Oncol. 2014;5:283–298. doi: 10.5306/wjco.v5.i3.283. PubMed DOI PMC

Jurj A., Braicu C., Pop L.-A., Tomuleasa C., Gherman C.D., Berindan-Neagoe I. The new era of nanotechnology, an alternative to change cancer treatment. Drug Des. Dev. Ther. 2017;11:2871–2890. doi: 10.2147/DDDT.S142337. PubMed DOI PMC

Tomuleasa C., Braicu C., Irimie A., Craciun L., Berindan-Neagoe I. Nanopharmacology in translational hematology and oncology. Int. J. Nanomed. 2014;9:3465–3479. doi: 10.2147/ijn.s60488. PubMed DOI PMC

Braicu C., Catana C., Calin G.A., Berindan-Neagoe I. NCRNA combined therapy as future treatment option for cancer. Curr. Pharm. Des. 2014;20:6565–6574. doi: 10.2174/1381612820666140826153529. PubMed DOI

Onitilo A.A., Engel J.M., Greenlee R.T., Mukesh B.N. Breast cancer subtypes based on ER/PR and Her2 expression: Comparison of clinicopathologic features and survival. Clin. Med. Res. 2009;7:4–13. doi: 10.3121/cmr.2008.825. PubMed DOI PMC

Chiorean R., Braicu C., Berindan-Neagoe I. Another review on triple negative breast cancer. Are we on the right way towards the exit from the labyrinth? Breast. 2013;22:1026–1033. doi: 10.1016/j.breast.2013.08.007. PubMed DOI

Elks C.M., Francis J. Central adiposity, systemic inflammation, and the metabolic syndrome. Curr. Hypertens. Rep. 2010;12:99–104. doi: 10.1007/s11906-010-0096-4. PubMed DOI

Chen M.J., Wu W.Y., Yen A.M., Fann J.C., Chen S.L., Chiu S.Y., Chen H.H., Chiou S.T. Body mass index and breast cancer: Analysis of a nation-wide population-based prospective cohort study on 1 393 985 Taiwanese women. Int. J. Obes. 2016;40:524–530. doi: 10.1038/ijo.2015.205. PubMed DOI PMC

Suzuki R., Orsini N., Saji S., Key T.J., Wolk A. Body weight and incidence of breast cancer defined by estrogen and progesterone receptor status—A meta-analysis. Int. J. Cancer. 2009;124:698–712. doi: 10.1002/ijc.23943. PubMed DOI

Munsell M.F., Sprague B.L., Berry D.A., Chisholm G., Trentham-Dietz A. Body mass index and breast cancer risk according to postmenopausal estrogen-progestin use and hormone receptor status. Epidemiol. Rev. 2014;36:114–136. doi: 10.1093/epirev/mxt010. PubMed DOI PMC

Xia X., Chen W., Li J., Chen X., Rui R., Liu C., Sun Y., Liu L., Gong J., Yuan P. Body mass index and risk of breast cancer: A nonlinear dose-response meta-analysis of prospective studies. Sci. Rep. 2014;4:7480. doi: 10.1038/srep07480. PubMed DOI PMC

Harvie M., Hooper L., Howell A.H. Central obesity and breast cancer risk: A systematic review. Obes. Rev. 2003;4:157–173. doi: 10.1046/j.1467-789X.2003.00108.x. PubMed DOI

Shieh Y., Scott C.G., Jensen M.R., Norman A.D., Bertrand K.A., Pankratz V.S., Brandt K.R., Visscher D.W., Shepherd J.A., Tamimi R.M., et al. Body mass index, mammographic density, and breast cancer risk by estrogen receptor subtype. Breast Cancer Res. BCR. 2019;21:48. doi: 10.1186/s13058-019-1129-9. PubMed DOI PMC

Pierobon M., Frankenfeld C.L. Obesity as a risk factor for triple-negative breast cancers: A systematic review and meta-analysis. Breast Cancer Res. Treat. 2013;137:307–314. doi: 10.1007/s10549-012-2339-3. PubMed DOI

Godinho-Mota J.C.M., Martins K.A., Vaz-Goncalves L., Mota J.F., Soares L.R., Freitas-Junior R. Visceral adiposity increases the risk of breast cancer: A case-control study. Nutr. Hosp. 2018;35:576–581. doi: 10.20960/nh.1441. PubMed DOI

Wang F., Liu L., Cui S., Tian F., Fan Z., Geng C., Cao X., Yang Z., Wang X., Liang H., et al. Distinct Effects of Body Mass Index and Waist/Hip Ratio on Risk of Breast Cancer by Joint Estrogen and Progestogen Receptor Status: Results from a Case-Control Study in Northern and Eastern China and Implications for Chemoprevention. Oncologist. 2017;22:1431–1443. doi: 10.1634/theoncologist.2017-0148. PubMed DOI PMC

Gu J.W., Young E., Patterson S.G., Makey K.L., Wells J., Huang M., Tucker K.B., Miele L. Postmenopausal obesity promotes tumor angiogenesis and breast cancer progression in mice. Cancer Biol. Ther. 2011;11:910–917. doi: 10.4161/cbt.11.10.15473. PubMed DOI PMC

Liu C.R., Li Q., Hou C., Li H., Shuai P., Zhao M., Zhong X.R., Xu Z.P., Li J.Y. Changes in Body Mass Index, Leptin, and Leptin Receptor Polymorphisms and Breast Cancer Risk. DNA Cell Biol. 2018;37:182–188. doi: 10.1089/dna.2017.4047. PubMed DOI

Jung S.Y., Papp J.C., Sobel E.M., Yu H., Zhang Z.F. Breast cancer risk and insulin resistance: Post genome-wide gene-environment interaction study using a random survival forest. Cancer Res. 2019;79:2784–2794. doi: 10.1158/0008-5472.CAN-18-3688. PubMed DOI PMC

Sanderson M., Lipworth L., Shrubsole M.J., Andersen S.W., Shu X.O., Zheng W., Hargreaves M.K., Blot W.J. Diabetes, obesity, and subsequent risk of postmenopausal breast cancer among white and black women in the Southern Community Cohort Study. Cancer Causes Control CCC. 2019;30:425–433. doi: 10.1007/s10552-019-01164-4. PubMed DOI PMC

Martinez J.A., Chalasani P., Thomson C.A., Roe D., Altbach M., Galons J.-P., Stopeck A., Thompson P.A., Villa-Guillen D.E., Chow H.H.S. Phase II study of metformin for reduction of obesity-associated breast cancer risk: A randomized controlled trial protocol. BMC Cancer. 2016;16:500. doi: 10.1186/s12885-016-2551-3. PubMed DOI PMC

Aldea M., Craciun L., Tomuleasa C., Berindan-Neagoe I., Kacso G., Florian I.S., Crivii C. Repositioning metformin in cancer: Genetics, drug targets, and new ways of delivery. Tumor Biol. 2014;35:5101–5110. doi: 10.1007/s13277-014-1676-8. PubMed DOI

Ando S., Gelsomino L., Panza S., Giordano C., Bonofiglio D., Barone I., Catalano S. Obesity, Leptin and Breast Cancer: Epidemiological Evidence and Proposed Mechanisms. Cancers. 2019;11:62. doi: 10.3390/cancers11010062. PubMed DOI PMC

Noy R., Pollard J.W. Tumor-associated macrophages: From mechanisms to therapy. Immunity. 2014;41:49–61. doi: 10.1016/j.immuni.2014.06.010. PubMed DOI PMC

Hadrup S., Donia M., Thor Straten P. Effector CD4 and CD8 T cells and their role in the tumor microenvironment. Cancer Microenviron. 2013;6:123–133. doi: 10.1007/s12307-012-0127-6. PubMed DOI PMC

Schirrmacher V., Feuerer M., Beckhove P., Ahlert T., Umansky V. T cell memory, anergy and immunotherapy in breast cancer. J. Mammary Gland. Boil. Neoplas. 2002;7:201–208. doi: 10.1023/A:1020308104613. PubMed DOI

Varn F.S., Mullins D.W., Arias-Pulido H., Fiering S., Cheng C. Adaptive immunity programmes in breast cancer. Immunology. 2017;150:25–34. doi: 10.1111/imm.12664. PubMed DOI PMC

He Y., Qian H., Liu Y., Duan L., Li Y., Shi G. The roles of regulatory B cells in cancer. J. Immunol. Res. 2014;2014:215471. doi: 10.1155/2014/215471. PubMed DOI PMC

Cannon B., Nedergaard J. Brown adipose tissue: Function and physiological significance. Physiol. Rev. 2004;84:277–359. doi: 10.1152/physrev.00015.2003. PubMed DOI

Saely C.H., Geiger K., Drexel H. Brown versus white adipose tissue: A mini-review. Gerontology. 2012;58:15–23. doi: 10.1159/000321319. PubMed DOI

Ibrahim M.M. Subcutaneous and visceral adipose tissue: Structural and functional differences. Obes. Rev. 2010;11:11–18. doi: 10.1111/j.1467-789X.2009.00623.x. PubMed DOI

Donohoe C.L., Doyle S.L., Reynolds J.V. Visceral adiposity, insulin resistance and cancer risk. Diabetol. Metab. Syndr. 2011;3:12. doi: 10.1186/1758-5996-3-12. PubMed DOI PMC

Donninelli G., Del Corno M., Pierdominici M., Scazzocchio B., Vari R., Varano B., Pacella I., Piconese S., Barnaba V., D’Archivio M., et al. Distinct Blood and Visceral Adipose Tissue Regulatory T Cell and Innate Lymphocyte Profiles Characterize Obesity and Colorectal Cancer. Front. Immunol. 2017;8:643. doi: 10.3389/fimmu.2017.00643. PubMed DOI PMC

Piconese S., Valzasina B., Colombo M.P. OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection. J. Exp. Med. 2008;205:825–839. doi: 10.1084/jem.20071341. PubMed DOI PMC

Altintas M.M., Azad A., Nayer B., Contreras G., Zaias J., Faul C., Reiser J., Nayer A. Mast cells, macrophages, and crown-like structures distinguish subcutaneous from visceral fat in mice. J. Lipid Res. 2011;52:480–488. doi: 10.1194/jlr.M011338. PubMed DOI PMC

Zhou Y., Yu X., Chen H., Sjoberg S., Roux J., Zhang L., Ivoulsou A.H., Bensaid F., Liu C.L., Liu J., et al. Leptin Deficiency Shifts Mast Cells toward Anti-Inflammatory Actions and Protects Mice from Obesity and Diabetes by Polarizing M2 Macrophages. Cell Metabolism. 2015;22:1045–1058. doi: 10.1016/j.cmet.2015.09.013. PubMed DOI PMC

Ng M.F. The role of mast cells in wound healing. Int. Wound J. 2010;7:55–61. doi: 10.1111/j.1742-481X.2009.00651.x. PubMed DOI PMC

Mukai K., Tsai M., Saito H., Galli S.J. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol. Rev. 2018;282:121–150. doi: 10.1111/imr.12634. PubMed DOI PMC

Bahr I., Goritz V., Doberstein H., Hiller G.G., Rosenstock P., Jahn J., Portner O., Berreis T., Mueller T., Spielmann J., et al. Diet-Induced Obesity Is Associated with an Impaired NK Cell Function and an Increased Colon Cancer Incidence. J. Nutr. Metab. 2017;2017:4297025. doi: 10.1155/2017/4297025. PubMed DOI PMC

Conroy M.J., Fitzgerald V., Doyle S.L., Channon S., Useckaite Z., Gilmartin N., O’Farrelly C., Ravi N., Reynolds J.V., Lysaght J. The microenvironment of visceral adipose tissue and liver alter natural killer cell viability and function. J. Leukoc. Biol. 2016;100:1435–1442. doi: 10.1189/jlb.5AB1115-493RR. PubMed DOI

Shoae-Hassani A., Behfar M., Mortazavi-Tabatabaei S.A., Ai J., Mohseni R., Hamidieh A.A. Natural Killer Cells from the Subcutaneous Adipose Tissue Underexpress the NKp30 and NKp44 in Obese Persons and Are Less Active against Major Histocompatibility Complex Class I Non-Expressing Neoplastic Cells. Front. Immunol. 2017;8:1486. doi: 10.3389/fimmu.2017.01486. PubMed DOI PMC

Moulin C.M., Rizzo L.V., Halpern A. Effect of surgery-induced weight loss on immune function. Expert Rev. Gastroenterol. Hepatol. 2008;2:617–619. doi: 10.1586/17474124.2.5.617. PubMed DOI

Wouters K., Gaens K., Bijnen M., Verboven K., Jocken J., Wetzels S., Wijnands E., Hansen D., van Greevenbroek M., Duijvestijn A., et al. Circulating classical monocytes are associated with CD11c(+) macrophages in human visceral adipose tissue. Sci. Rep. 2017;7:42665. doi: 10.1038/srep42665. PubMed DOI PMC

Tallerico R., Conti L., Lanzardo S., Sottile R., Garofalo C., Wagner A.K., Johansson M.H., Cristiani C.M., Karre K., Carbone E., et al. NK cells control breast cancer and related cancer stem cell hematological spread. Oncoimmunology. 2017;6:e1284718. doi: 10.1080/2162402X.2017.1284718. PubMed DOI PMC

Blaszczak A.M., Jalilvand A., Liu J., Wright V.P., Suzo A., Needleman B., Noria S., Lafuse W., Hsueh W.A., Bradley D. Human Visceral Adipose Tissue Macrophages Are Not Adequately Defined by Standard Methods of Characterization. J. Diabetes Res. 2019;2019:8124563. doi: 10.1155/2019/8124563. PubMed DOI PMC

Atri C., Guerfali F.Z., Laouini D. Role of Human Macrophage Polarization in Inflammation during Infectious Diseases. Int. J. Mol. Sci. 2018;19 doi: 10.3390/ijms19061801. PubMed DOI PMC

Huda S.S., Jordan F., Bray J., Love G., Payne R., Sattar N., Freeman D.J. Visceral adipose tissue activated macrophage content and inflammatory adipokine secretion is higher in pre-eclampsia than in healthy pregnancys. Clin. Sci. 2017;131:1529–1540. doi: 10.1042/CS20160832. PubMed DOI PMC

Kralova Lesna I., Kralova A., Cejkova S., Fronek J., Petras M., Sekerkova A., Thieme F., Janousek L., Poledne R. Characterisation and comparison of adipose tissue macrophages from human subcutaneous, visceral and perivascular adipose tissue. J. Trans. Med. 2016;14:208. doi: 10.1186/s12967-016-0962-1. PubMed DOI PMC

Fontana L., Eagon J.C., Trujillo M.E., Scherer P.E., Klein S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes. 2007;56:1010–1013. doi: 10.2337/db06-1656. PubMed DOI

Williams C.B., Yeh E.S., Soloff A.C. Tumor-associated macrophages: Unwitting accomplices in breast cancer malignancy. NPJ Breast Cancer. 2016;2 doi: 10.1038/npjbcancer.2015.25. PubMed DOI PMC

Stoll B.A. Upper abdominal obesity, insulin resistance and breast cancer risk. Int. J. Obes. Relat. Metab. Disord. 2002;26:747–753. doi: 10.1038/sj.ijo.0801998. PubMed DOI

Koenen T.B., Stienstra R., van Tits L.J., Joosten L.A., van Velzen J.F., Hijmans A., Pol J.A., van der Vliet J.A., Netea M.G., Tack C.J., et al. The inflammasome and caspase-1 activation: A new mechanism underlying increased inflammatory activity in human visceral adipose tissue. Endocrinology. 2011;152:3769–3778. doi: 10.1210/en.2010-1480. PubMed DOI

Cancello R., Tordjman J., Poitou C., Guilhem G., Bouillot J.L., Hugol D., Coussieu C., Basdevant A., Bar Hen A., Bedossa P., et al. Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes. 2006;55:1554–1561. doi: 10.2337/db06-0133. PubMed DOI

Reuter S., Gupta S.C., Chaturvedi M.M., Aggarwal B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010;49:1603–1616. doi: 10.1016/j.freeradbiomed.2010.09.006. PubMed DOI PMC

Johar R., Sharma R., Kaur A., Mukherjee T.K. Role of Reactive Oxygen Species in Estrogen Dependant Breast Cancer Complication. Anticancer Agents Med. Chem. 2015;16:190–199. doi: 10.2174/1871520615666150518092315. PubMed DOI

Madeddu C., Gramignano G., Floris C., Murenu G., Sollai G., Maccio A. Role of inflammation and oxidative stress in post-menopausal oestrogen-dependent breast cancer. J. Cell. Mol. Med. 2014;18:2519–2529. doi: 10.1111/jcmm.12413. PubMed DOI PMC

Teslow E.A., Mitrea C., Bao B., Mohammad R.M., Polin L.A., Dyson G., Purrington K.S., Bollig-Fischer A. Obesity-induced MBD2_v2 expression promotes tumor-initiating triple-negative breast cancer stem cells. Mol. Oncol. 2019;13:894–908. doi: 10.1002/1878-0261.12444. PubMed DOI PMC

Bassols J., Ortega F.J., Moreno-Navarrete J.M., Peral B., Ricart W., Fernandez-Real J.M. Study of the proinflammatory role of human differentiated omental adipocytes. J. Cell. Biochem. 2009;107:1107–1117. doi: 10.1002/jcb.22208. PubMed DOI

Nagahashi M., Yamada A., Katsuta E., Aoyagi T., Huang W.C., Terracina K.P., Hait N.C., Allegood J.C., Tsuchida J., Yuza K., et al. Targeting the SphK1/S1P/S1PR1 axis that links obesity, chronic inflammation and breast cancer metastasis. Cancer Res. 2018;78:1713–1725. doi: 10.1158/0008-5472.CAN-17-1423. PubMed DOI PMC

Ritter A., Friemel A., Fornoff F., Adjan M., Solbach C., Yuan J., Louwen F. Characterization of adipose-derived stem cells from subcutaneous and visceral adipose tissues and their function in breast cancer cells. Oncotarget. 2015;6:34475–34493. doi: 10.18632/oncotarget.5922. PubMed DOI PMC

Kantono M., Guo B. Inflammasomes and Cancer: The Dynamic Role of the Inflammasome in Tumor Development. Front. Immunol. 2017;8:1132. doi: 10.3389/fimmu.2017.01132. PubMed DOI PMC

Guo B., Fu S., Zhang J., Liu B., Li Z. Targeting inflammasome/IL-1 pathways for cancer immunotherapy. Sci. Rep. 2016;6:36107. doi: 10.1038/srep36107. PubMed DOI PMC

Kolb R., Phan L., Borcherding N., Liu Y., Yuan F., Janowski A.M., Xie Q., Markan K.R., Li W., Potthoff M.J., et al. Obesity-associated NLRC4 inflammasome activation drives breast cancer progression. Nat. Commun. 2016;7:13007. doi: 10.1038/ncomms13007. PubMed DOI PMC

Jeon M., Han J., Nam S.J., Lee J.E., Kim S. Elevated IL-1β expression induces invasiveness of triple negative breast cancer cells and is suppressed by zerumbone. Chem. Biol. Interact. 2016;258:126–133. doi: 10.1016/j.cbi.2016.08.021. PubMed DOI

Lin S., Gan Z., Han K., Yao Y., Min D. Interleukin-6 as a prognostic marker for breast cancer: A meta-analysis. Tumori. 2015;101:535–541. doi: 10.5301/tj.5000357. PubMed DOI

Heinrich P.C., Behrmann I., Haan S., Hermanns H.M., Muller-Newen G., Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 2003;374:1–20. doi: 10.1042/bj20030407. PubMed DOI PMC

Sullivan N.J. Interleukin-6 in Breast Tumor Microenvironment, Breast Cancer—Focusing Tumor Microenvironment, Stem Cells and Metastasis. InTech; London, UK: 2011.

Harada A., Sekido N., Akahoshi T., Wada T., Mukaida N., Matsushima K. Essential involvement of interleukin-8 (IL-8) in acute inflammation. J. Leukoc. Biol. 1994;56:559–564. doi: 10.1002/jlb.56.5.559. PubMed DOI

Todorovic-Rakovic N., Milovanovic J. Interleukin-8 in breast cancer progression. J. Interf. Cytokine Res. 2013;33:563–570. doi: 10.1089/jir.2013.0023. PubMed DOI PMC

Kawaguchi M., Kokubu F., Fujita J., Huang S.K., Hizawa N. Role of interleukin-17F in asthma. Inflamm. Allergy Drug Targets. 2009;8:383–389. doi: 10.2174/1871528110908050383. PubMed DOI

Welte T., Zhang X.H. Interleukin-17 Could Promote Breast Cancer Progression at Several Stages of the Disease. Mediat. Inflamm. 2015;2015:804347. doi: 10.1155/2015/804347. PubMed DOI PMC

Nicolini A., Carpi A., Rossi G. Cytokines in breast cancer. Cytokine Growth Factor Rev. 2006;17:325–337. doi: 10.1016/j.cytogfr.2006.07.002. PubMed DOI

Huang H.Y., Yu H.T., Chan S.H., Lee C.L., Wang H.S., Soong Y.K. Eutopic endometrial interleukin-18 system mRNA and protein expression at the level of endometrial-myometrial interface in adenomyosis patients. Fertil. Steril. 2010;94:33–39. doi: 10.1016/j.fertnstert.2009.01.132. PubMed DOI

Park I.H., Yang H.N., Lee K.J., Kim T.S., Lee E.S., Jung S.Y., Kwon Y., Kong S.Y. Tumor-derived IL-18 induces PD-1 expression on immunosuppressive NK cells in triple-negative breast cancer. Oncotarget. 2017;8:32722–32730. doi: 10.18632/oncotarget.16281. PubMed DOI PMC

Lu L., Shi W., Deshmukh R.R., Long J., Cheng X., Ji W., Zeng G., Chen X., Zhang Y., Dou Q.P. Tumor necrosis factor-alpha sensitizes breast cancer cells to natural products with proteasome-inhibitory activity leading to apoptosis. PLoS ONE. 2014;9:e113783. doi: 10.1371/journal.pone.0113783. PubMed DOI PMC

Locksley R.M., Killeen N., Lenardo M.J. The TNF and TNF receptor superfamilies: Integrating mammalian biology. Cell. 2001;104:487–501. doi: 10.1016/S0092-8674(01)00237-9. PubMed DOI

Gao Y., Yang Y., Yuan F., Huang J., Xu W., Mao B., Yuan Z., Bi W. TNFalpha-YAP/p65-HK2 axis mediates breast cancer cell migration. Oncogenesis. 2017;6:e383. doi: 10.1038/oncsis.2017.83. PubMed DOI PMC

Sadashiv, Tiwari S., Paul B.N., Kumar S., Chandra A., Dhananjai S., Negi M.P. Resistin gene expression in visceral adipose tissue of postmenopausal women and its association with insulin resistance. Womens Health. 2012;8:521–528. doi: 10.2217/WHE.12.46. PubMed DOI

Curat C.A., Wegner V., Sengenes C., Miranville A., Tonus C., Busse R., Bouloumie A. Macrophages in human visceral adipose tissue: Increased accumulation in obesity and a source of resistin and visfatin. Diabetologia. 2006;49:744–747. doi: 10.1007/s00125-006-0173-z. PubMed DOI

Coelho M., Oliveira T., Fernandes R. Biochemistry of adipose tissue: An endocrine organ. Arch. Med. Sci. 2013;9:191–200. doi: 10.5114/aoms.2013.33181. PubMed DOI PMC

Yip I., Go V.L., Hershman J.M., Wang H.J., Elashoff R., DeShields S., Liu Y., Heber D. Insulin-leptin-visceral fat relation during weight loss. Pancreas. 2001;23:197–203. doi: 10.1097/00006676-200108000-00010. PubMed DOI

Niu J., Jiang L., Guo W., Shao L., Liu Y., Wang L. The Association between Leptin Level and Breast Cancer: A Meta-Analysis. PLoS ONE. 2013;8:e67349. doi: 10.1371/journal.pone.0067349. PubMed DOI PMC

Newman G., Gonzalez-Perez R.R. Leptin-cytokine crosstalk in breast cancer. Mol. Cell. Endocrinol. 2014;382:570–582. doi: 10.1016/j.mce.2013.03.025. PubMed DOI PMC

Haque I., Ghosh A., Acup S., Banerjee S., Dhar K., Ray A., Sarkar S., Kambhampati S., Banerjee S.K. Leptin-induced ER-alpha-positive breast cancer cell viability and migration is mediated by suppressing CCN5-signaling via activating JAK/AKT/STAT-pathway. BMC Cancer. 2018;18:99. doi: 10.1186/s12885-018-3993-6. PubMed DOI PMC

Raut P.K., Choi D.Y., Kim S.H., Hong J.T., Kwon T.K., Jeong J.H., Park P.H. Estrogen receptor signaling mediates leptin-induced growth of breast cancer cells via autophagy induction. Oncotarget. 2017;8:109417–109435. doi: 10.18632/oncotarget.22684. PubMed DOI PMC

Mocino-Rodriguez M.D., Santillan-Benitez J.G., Dozal-Dominguez D.S., Hernandez-Navarro M.D., Flores-Merino M.V., Sandoval-Cabrera A., Garcia Vazquez F.J. Expression of AdipoR1 and AdipoR2 Receptors as Leptin-Breast Cancer Regulation Mechanisms. Dis. Mark. 2017;2017:4862016. doi: 10.1155/2017/4862016. PubMed DOI PMC

Gonzalez-Perez R.R., Lanier V., Newman G. Leptin’s Pro-Angiogenic Signature in Breast Cancer. Cancers. 2013;5:1140–1162. doi: 10.3390/cancers5031140. PubMed DOI PMC

Rene Gonzalez R., Watters A., Xu Y., Singh U.P., Mann D.R., Rueda B.R., Penichet M.L. Leptin-signaling inhibition results in efficient anti-tumor activity in estrogen receptor positive or negative breast cancer. Breast Cancer Res. BCR. 2009;11:R36. doi: 10.1186/bcr2321. PubMed DOI PMC

Pena-Cano M.I., Saucedo R., Morales-Avila E., Valencia J., Zavala-Moha J.A., Lopez A. Deregulated microRNAs and Adiponectin in Postmenopausal Women with Breast Cancer. Gynecol. Obstet. Investig. 2019;84:369–377. doi: 10.1159/000496340. PubMed DOI

Yu Z., Tang S., Ma H., Duan H., Zeng Y. Association of serum adiponectin with breast cancer: A meta-analysis of 27 case-control studies. Medicine. 2019;98:e14359. doi: 10.1097/MD.0000000000014359. PubMed DOI PMC

Macías-Gómez N.M., Hernández-Terrones M.C., Ramírez-Guerrero A.A., Leal-Ugarte E., Gutiérrez-Angulo M., Peregrina-Sandoval J. ADIPOQ rs2241766 SNP as protective marker against DIBC development in Mexican population. PLoS ONE. 2019;14:e0214080. doi: 10.1371/journal.pone.0214080. PubMed DOI PMC

Chung S.J., Nagaraju G.P., Nagalingam A., Muniraj N., Kuppusamy P., Walker A., Woo J., Gyorffy B., Gabrielson E., Saxena N.K., et al. ADIPOQ/adiponectin induces cytotoxic autophagy in breast cancer cells through STK11/LKB1-mediated activation of the AMPK-ULK1 axis. Autophagy. 2017;13:1386–1403. doi: 10.1080/15548627.2017.1332565. PubMed DOI PMC

Mauro L., Naimo G.D., Gelsomino L., Malivindi R., Bruno L., Pellegrino M., Tarallo R., Memoli D., Weisz A., Panno M.L., et al. Uncoupling effects of estrogen receptor alpha on LKB1/AMPK interaction upon adiponectin exposure in breast cancer. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2018;32:4343–4355. doi: 10.1096/fj.201701315R. PubMed DOI

Fruhbeck G. Intracellular signalling pathways activated by leptin. Biochem. J. 2006;393:7–20. doi: 10.1042/BJ20051578. PubMed DOI PMC

Vansaun M.N. Molecular pathways: Adiponectin and leptin signaling in cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2013;19:1926–1932. doi: 10.1158/1078-0432.CCR-12-0930. PubMed DOI PMC

Nanjappa V., Raju R., Muthusamy B., Sharma J., Thomas J.K., Nidhina P.A.H., Harsha H.C., Pandey A., Anilkumar G., Prasad T.S.K. A comprehensive curated reaction map of leptin signaling pathway. J. Proteom. Bioinform. 2011;4:184–189. doi: 10.4172/jpb.1000188. DOI

Van Kruijsdijk R.C., van der Wall E., Visseren F.L. Obesity and cancer: The role of dysfunctional adipose tissue. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cospons. Am. Soc. Prev. Oncol. 2009;18:2569–2578. doi: 10.1158/1055-9965.EPI-09-0372. PubMed DOI

Nalabolu M.R., Palasamudram K., Jamil K. Adiponectin and leptin molecular actions and clinical significance in breast cancer. Int. J. Hematol. Oncol. Stem Cell Res. 2014;8:31–40. PubMed PMC

Ruan H., Dong L.Q. Adiponectin signaling and function in insulin target tissues. J. Mol. Cell Biol. 2016;8:101–109. doi: 10.1093/jmcb/mjw014. PubMed DOI PMC

Kim H.G., Jin S.W., Kim Y.A., Khanal T., Lee G.H., Kim S.J., Rhee S.D., Chung Y.C., Hwang Y.J., Jeong T.C., et al. Leptin induces CREB-dependent aromatase activation through COX-2 expression in breast cancer cells. Food Chem. Toxicol. 2017;106:232–241. doi: 10.1016/j.fct.2017.05.058. PubMed DOI

Liao W., Yu C., Wen J., Jia W., Li G., Ke Y., Zhao S., Campell W. Adiponectin induces interleukin-6 production and activates STAT3 in adult mouse cardiac fibroblasts. Biol. Cell. 2009;101:263–272. doi: 10.1042/BC20080117. PubMed DOI

Magoffin D.A., Weitsman S.R., Aagarwal S.K., Jakimiuk A.J. Leptin regulation of aromatase activity in adipose stromal cells from regularly cycling women. Ginekol. Pol. 1999;70:1–7. PubMed

Catalano S., Marsico S., Giordano C., Mauro L., Rizza P., Panno M.L., Ando S. Leptin enhances, via AP-1, expression of aromatase in the MCF-7 cell line. J. Biol. Chem. 2003;278:28668–28676. doi: 10.1074/jbc.M301695200. PubMed DOI

Tekmal R.R., Kirma N., Gill K., Fowler K. Aromatase overexpression and breast hyperplasia, an in vivo model—Continued overexpression of aromatase is sufficient to maintain hyperplasia without circulating estrogens, and aromatase inhibitors abrogate these preneoplastic changes in mammary glands. Endocr. Relat. Cancer. 1999;6:307–314. doi: 10.1677/erc.0.0060307. PubMed DOI

Cleary M.P., Grossmann M.E. Minireview: Obesity and breast cancer: The estrogen connection. Endocrinology. 2009;150:2537–2542. doi: 10.1210/en.2009-0070. PubMed DOI PMC

Hetemaki N., Savolainen-Peltonen H., Tikkanen M.J., Wang F., Paatela H., Hamalainen E., Turpeinen U., Haanpaa M., Vihma V., Mikkola T.S. Estrogen Metabolism in Abdominal Subcutaneous and Visceral Adipose Tissue in Postmenopausal Women. J. Clin. Endocrinol. Metab. 2017;102:4588–4595. doi: 10.1210/jc.2017-01474. PubMed DOI

Perez-Hernandez A.I., Catalan V., Gomez-Ambrosi J., Rodriguez A., Fruhbeck G. Mechanisms linking excess adiposity and carcinogenesis promotion. Front. Endocrinol. 2014;5:65. doi: 10.3389/fendo.2014.00065. PubMed DOI PMC

Liang J., Shang Y. Estrogen and cancer. Annu. Rev. Physiol. 2013;75:225–240. doi: 10.1146/annurev-physiol-030212-183708. PubMed DOI

Gorrini C., Gang B.P., Bassi C., Wakeham A., Baniasadi S.P., Hao Z., Li W.Y., Cescon D.W., Li Y.T., Molyneux S., et al. Estrogen controls the survival of BRCA1-deficient cells via a PI3K-NRF2-regulated pathway. Proc. Natl. Acad. Sci. USA. 2014;111:4472–4477. doi: 10.1073/pnas.1324136111. PubMed DOI PMC

Jeffery E., Wing A., Holtrup B., Sebo Z., Kaplan J.L., Saavedra-Pena R., Church C.D., Colman L., Berry R., Rodeheffer M.S. The Adipose Tissue Microenvironment Regulates Depot-Specific Adipogenesis in Obesity. Cell Metab. 2016;24:142–150. doi: 10.1016/j.cmet.2016.05.012. PubMed DOI PMC

Kaaks R., Rinaldi S., Key T.J., Berrino F., Peeters P.H., Biessy C., Dossus L., Lukanova A., Bingham S., Khaw K.T., et al. Postmenopausal serum androgens, oestrogens and breast cancer risk: The European prospective investigation into cancer and nutrition. Endocr. Relat. Cancer. 2005;12:1071–1082. doi: 10.1677/erc.1.01038. PubMed DOI

Key T.J., Appleby P.N., Reeves G.K., Roddam A., Dorgan J.F., Longcope C., Stanczyk F.Z., Stephenson H.E., Jr., Falk R.T., Miller R., et al. Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women. J. Natl. Cancer Instig. 2003;95:1218–1226. PubMed

Yager J.D., Davidson N.E. Estrogen carcinogenesis in breast cancer. New Engl. J. Med. 2006;354:270–282. doi: 10.1056/NEJMra050776. PubMed DOI

Fuhrman B.J., Schairer C., Gail M.H., Boyd-Morin J., Xu X., Sue L.Y., Buys S.S., Isaacs C., Keefer L.K., Veenstra T.D., et al. Estrogen metabolism and risk of breast cancer in postmenopausal women. J. Natl. Cancer Inst. 2012;104:326–339. doi: 10.1093/jnci/djr531. PubMed DOI PMC

Stender J.D., Frasor J., Komm B., Chang K.C., Kraus W.L., Katzenellenbogen B.S. Estrogen-regulated gene networks in human breast cancer cells: Involvement of E2F1 in the regulation of cell proliferation. Mol. Endocrinol. 2007;21:2112–2123. doi: 10.1210/me.2006-0474. PubMed DOI

Ruan X., Seeger H., Wallwiener D., Huober J., Mueck A.O. The ratio of the estradiol metabolites 2-hydroxyestrone (2-OHE1) and 16alpha-hydroxyestrone (16-OHE1) may predict breast cancer risk in postmenopausal but not in premenopausal women: Two case-control studies. Arch. Gynecol. Obstet. 2015;291:1141–1146. doi: 10.1007/s00404-014-3512-1. PubMed DOI

Tripathi K., Mani C., Somasagara R.R., Clark D.W., Ananthapur V., Vinaya K., Palle K. Detection and evaluation of estrogen DNA-adducts and their carcinogenic effects in cultured human cells using biotinylated estradiol. Mol. Carcinogen. 2017;56:1010–1020. doi: 10.1002/mc.22566. PubMed DOI

Bradlow H.L., Telang N.T., Sepkovic D.W., Osborne M.P. 2-hydroxyestrone: The ‘good’ estrogen. J. Endocrinol. 1996;150(Suppl. S3):S259–S265. PubMed

Obi N., Vrieling A., Heinz J., Chang-Claude J. Estrogen metabolite ratio: Is the 2-hydroxyestrone to 16alpha-hydroxyestrone ratio predictive for breast cancer? Int. J. Womens Health. 2011;3:37–51. doi: 10.2147/IJWH.S7595. PubMed DOI PMC

Yue W., Yager J.D., Wang J.P., Jupe E.R., Santen R.J. Estrogen receptor-dependent and independent mechanisms of breast cancer carcinogenesis. Steroids. 2013;78:161–170. doi: 10.1016/j.steroids.2012.11.001. PubMed DOI

Berindan-Neagoe I., Calin G.A. Molecular pathways: MicroRNAs, cancer cells, and microenvironment. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2014;20:6247–6253. doi: 10.1158/1078-0432.CCR-13-2500. PubMed DOI PMC

Ferrante S.C., Nadler E.P., Pillai D.K., Hubal M.J., Wang Z., Wang J.M., Gordish-Dressman H., Koeck E., Sevilla S., Wiles A.A., et al. Adipocyte-derived exosomal miRNAs: A novel mechanism for obesity-related disease. Pediatric Res. 2015;77:447–454. doi: 10.1038/pr.2014.202. PubMed DOI PMC

Sandhu R., Rivenbark A.G., Coleman W.B. Loss of post-transcriptional regulation of DNMT3b by microRNAs: A possible molecular mechanism for the hypermethylation defect observed in a subset of breast cancer cell lines. Int. J. Oncol. 2012;41:721–732. doi: 10.3892/ijo.2012.1505. PubMed DOI PMC

Roll J.D., Rivenbark A.G., Jones W.D., Coleman W.B. DNMT3b overexpression contributes to a hypermethylator phenotype in human breast cancer cell lines. Mol. Cancer. 2008;7:15. doi: 10.1186/1476-4598-7-15. PubMed DOI PMC

Cimino D., De Pitta C., Orso F., Zampini M., Casara S., Penna E., Quaglino E., Forni M., Damasco C., Pinatel E., et al. miR148b is a major coordinator of breast cancer progression in a relapse-associated microRNA signature by targeting ITGA5, ROCK1, PIK3CA, NRAS, and CSF1. FASEB J. Off. Publ. Fed. of Am. Soc. Exp. Biol. 2013;27:1223–1235. doi: 10.1096/fj.12-214692. PubMed DOI

Orso F., Quirico L., Virga F., Penna E., Dettori D., Cimino D., Coppo R., Grassi E., Elia A.R., Brusa D., et al. miR-214 and miR-148b Targeting Inhibits Dissemination of Melanoma and Breast Cancer. Cancer Res. 2016;76:5151–5162. doi: 10.1158/0008-5472.CAN-15-1322. PubMed DOI

Lai Y., Chen Y., Lin Y., Ye L. Down-regulation of LncRNA CCAT1 enhances radiosensitivity via regulating miR-148b in breast cancer. Cell. Biol. Int. 2018;42:227–236. doi: 10.1002/cbin.10890. PubMed DOI

Cuk K., Zucknick M., Madhavan D., Schott S., Golatta M., Heil J., Marme F., Turchinovich A., Sinn P., Sohn C., et al. Plasma microRNA panel for minimally invasive detection of breast cancer. PLoS ONE. 2013;8:e76729. doi: 10.1371/journal.pone.0076729. PubMed DOI PMC

Cuk K., Zucknick M., Heil J., Madhavan D., Schott S., Turchinovich A., Arlt D., Rath M., Sohn C., Benner A., et al. Circulating microRNAs in plasma as early detection markers for breast cancer. Int. J. Cancer. 2013;132:1602–1612. doi: 10.1002/ijc.27799. PubMed DOI

Shen J., Hu Q., Schrauder M., Yan L., Wang D., Medico L., Guo Y., Yao S., Zhu Q., Liu B., et al. Circulating miR-148b and miR-133a as biomarkers for breast cancer detection. Oncotarget. 2014;5:5284–5294. doi: 10.18632/oncotarget.2014. PubMed DOI PMC

Li J.Y., Jia S., Zhang W.H., Zhang Y., Kang Y., Li P.S. Differential distribution of microRNAs in breast cancer grouped by clinicopathological subtypes. Asian Pac. J. Cancer Prev. 2013;14:3197–3203. doi: 10.7314/APJCP.2013.14.5.3197. PubMed DOI

Do Canto L.M., Marian C., Willey S., Sidawy M., Da Cunha P.A., Rone J.D., Li X., Gusev Y., Haddad B.R. MicroRNA analysis of breast ductal fluid in breast cancer patients. Int. J. Oncol. 2016;48:2071–2078. doi: 10.3892/ijo.2016.3435. PubMed DOI PMC

Schultz D.J., Muluhngwi P., Alizadeh-Rad N., Green M.A., Rouchka E.C., Waigel S.J., Klinge C.M. Genome-wide miRNA response to anacardic acid in breast cancer cells. PLoS ONE. 2017;12:e0184471. doi: 10.1371/journal.pone.0184471. PubMed DOI PMC

Lewinska A., Adamczyk-Grochala J., Deregowska A., Wnuk M. Sulforaphane-Induced Cell Cycle Arrest and Senescence are accompanied by DNA Hypomethylation and Changes in microRNA Profile in Breast Cancer Cells. Theranostics. 2017;7:3461–3477. doi: 10.7150/thno.20657. PubMed DOI PMC

Pellegrino L., Stebbing J., Braga V.M., Frampton A.E., Jacob J., Buluwela L., Jiao L.R., Periyasamy M., Madsen C.D., Caley M.P., et al. miR-23b regulates cytoskeletal remodeling, motility and metastasis by directly targeting multiple transcripts. Nucl. Acids Res. 2013;41:5400–5412. doi: 10.1093/nar/gkt245. PubMed DOI PMC

Ell B., Qiu Q., Wei Y., Mercatali L., Ibrahim T., Amadori D., Kang Y. The microRNA-23b/27b/24 cluster promotes breast cancer lung metastasis by targeting metastasis-suppressive gene prosaposin. J. Biol. Chem. 2014;289:21888–21895. doi: 10.1074/jbc.M114.582866. PubMed DOI PMC

Adi N., Adi J., Cesar L., Kurlansky P., Agatston A., Webster K.A. Role of Micro RNA-205 in Promoting Visceral Adiposity of NZ10 Mice with Polygenic Susceptibility for Type 2 Diabetes. J. Diabetes Metab. 2015;6 doi: 10.4172/2155-6156.1000574. PubMed DOI PMC

Feng X., Wang Z., Fillmore R., Xi Y. MiR-200, a new star miRNA in human cancer. Cancer Lett. 2014;344:166–173. doi: 10.1016/j.canlet.2013.11.004. PubMed DOI PMC

Tsouko E., Wang J., Frigo D.E., Aydogdu E., Williams C. miR-200a inhibits migration of triple-negative breast cancer cells through direct repression of the EPHA2 oncogene. Carcinogenesis. 2015;36:1051–1060. doi: 10.1093/carcin/bgv087. PubMed DOI PMC

Yao J., Xu F., Zhang D., Yi W., Chen X., Chen G., Zhou E. TP73-AS1 promotes breast cancer cell proliferation through miR-200a-mediated TFAM inhibition. J. Cell. Biochem. 2018;119:680–690. doi: 10.1002/jcb.26231. PubMed DOI

Li P., Xu T., Zhou X., Liao L., Pang G., Luo W., Han L., Zhang J., Luo X., Xie X., et al. Downregulation of miRNA-141 in breast cancer cells is associated with cell migration and invasion: Involvement of ANP32E targeting. Cancer Med. 2017;6:662–672. doi: 10.1002/cam4.1024. PubMed DOI PMC

Abedi N., Mohammadi-Yeganeh S., Koochaki A., Karami F., Paryan M. miR-141 as potential suppressor of beta-catenin in breast cancer. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2015;36:9895–9901. doi: 10.1007/s13277-015-3738-y. PubMed DOI

Ye Z.B., Ma G., Zhao Y.H., Xiao Y., Zhan Y., Jing C., Gao K., Liu Z.H., Yu S.J. miR-429 inhibits migration and invasion of breast cancer cells in vitro. Int. J. Oncol. 2015;46:531–538. doi: 10.3892/ijo.2014.2759. PubMed DOI PMC

Ying W., Riopel M., Bandyopadhyay G., Dong Y., Birmingham A., Seo J.B., Ofrecio J.M., Wollam J., Hernandez-Carretero A., Fu W., et al. Adipose Tissue Macrophage-Derived Exosomal miRNAs Can Modulate In Vivo and In Vitro Insulin Sensitivity. Cell. 2017;171:372–384. doi: 10.1016/j.cell.2017.08.035. PubMed DOI

Mattiske S., Suetani R.J., Neilsen P.M., Callen D.F. The oncogenic role of miR-155 in breast cancer. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cospons. Am. Soc. Prev. Oncol. 2012;21:1236–1243. doi: 10.1158/1055-9965.EPI-12-0173. PubMed DOI

Zhang C.M., Zhao J., Deng H.Y. MiR-155 promotes proliferation of human breast cancer MCF-7 cells through targeting tumor protein 53-induced nuclear protein 1. J. Biomed. Sci. 2013;20:79. doi: 10.1186/1423-0127-20-79. PubMed DOI PMC

Cojocneanu Petric R., Braicu C., Raduly L., Zanoaga O., Dragos N., Monroig P., Dumitrascu D., Berindan-Neagoe I. Phytochemicals modulate carcinogenic signaling pathways in breast and hormone-related cancers. OncoTargets Ther. 2015;8:2053–2066. doi: 10.2147/OTT.S83597. PubMed DOI PMC

Braicu C., Mehterov N., Vladimirov B., Sarafian V., Nabavi S.M., Atanasov A.G., Berindan-Neagoe I. Nutrigenomics in cancer: Revisiting the effects of natural compounds. Semin. Cancer Biol. 2017;46:84–106. doi: 10.1016/j.semcancer.2017.06.011. PubMed DOI

Zhou W., Shi G., Zhang Q., Wu Q., Li B., Zhang Z. MicroRNA-20b promotes cell growth of breast cancer cells partly via targeting phosphatase and tensin homologue (PTEN) Cell Biosci. 2014;4:62. doi: 10.1186/2045-3701-4-62. PubMed DOI PMC

Gentile A.M., Lhamyani S., Coin-Araguez L., Clemente-Postigo M., Oliva Olivera W., Romero-Zerbo S.Y., Garcia-Serrano S., Garcia-Escobar E., Zayed H., Doblado E., et al. miR-20b, miR-296, and Let-7f Expression in Human Adipose Tissue is Related to Obesity and Type 2 Diabetes. Obesity. 2019;27:245–254. doi: 10.1002/oby.22363. PubMed DOI

Dinami R., Buemi V., Sestito R., Zappone A., Ciani Y., Mano M., Petti E., Sacconi A., Blandino G., Giacca M., et al. Epigenetic silencing of miR-296 and miR-512 ensures hTERT dependent apoptosis protection and telomere maintenance in basal-type breast cancer cells. Oncotarget. 2017;8:95674–95691. doi: 10.18632/oncotarget.21180. PubMed DOI PMC

Tao W.-Y., Liang X.-S., Liu Y., Wang C.-Y., Pang D. Decrease of let-7f in low-dose metronomic Paclitaxel chemotherapy contributed to upregulation of thrombospondin-1 in breast cancer. Int. J. Biol. Sci. 2015;11:48–58. doi: 10.7150/ijbs.9969. PubMed DOI PMC

Robado de Lope L., Alcíbar O.L., Amor López A., Hergueta-Redondo M., Peinado H. Tumour-adipose tissue crosstalk: Fuelling tumour metastasis by extracellular vesicles. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018;373:20160485. doi: 10.1098/rstb.2016.0485. PubMed DOI PMC

Ji C., Guo X. The clinical potential of circulating microRNAs in obesity. Nat. Rev. Endocrinol. 2019 doi: 10.1038/s41574-019-0260-0. PubMed DOI

Groza M., Zimta A.A., Irimie A., Achimas-Cadariu P., Cenariu D., Stanta G., Berindan-Neagoe I. Recent advancements in the study of breast cancer exosomes as mediators of intratumoral communication. J. Cell. Physiol. 2019 doi: 10.1002/jcp.29096. PubMed DOI

Gernapudi R., Yao Y., Zhang Y., Wolfson B., Roy S., Duru N., Eades G., Yang P., Zhou Q. Targeting exosomes from preadipocytes inhibits preadipocyte to cancer stem cell signaling in early-stage breast cancer. Breast Cancer Res. Treat. 2015;150:685–695. doi: 10.1007/s10549-015-3326-2. PubMed DOI PMC

Lin R., Wang S., Zhao R.C. Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model. Mol. Cell. Biochem. 2013;383:13–20. doi: 10.1007/s11010-013-1746-z. PubMed DOI

Wang S., Su X., Xu M., Xiao X., Li X., Li H., Keating A., Zhao R. Exosomes secreted by mesenchymal stromal/stem cell-derived adipocytes promote breast cancer cell growth via activation of Hippo signaling pathway. Stem Cell Res. Ther. 2019;10 doi: 10.1186/s13287-019-1220-2. PubMed DOI PMC

Thomou T., Mori M.A., Dreyfuss J.M., Konishi M., Sakaguchi M., Wolfrum C., Rao T.N., Winnay J.N., Garcia-Martin R., Grinspoon S.K., et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature. 2017;542:450–455. doi: 10.1038/nature21365. PubMed DOI PMC

Wu Q., Sun S., Li Z., Yang Q., Li B., Zhu S., Wang L., Wu J., Yuan J., Wang C., et al. Breast cancer-released exosomes trigger cancer-associated cachexia to promote tumor progression. Adipocyte. 2019;8:31–45. doi: 10.1080/21623945.2018.1551688. PubMed DOI PMC

Meerson A., Eliraz Y., Yehuda H., Knight B., Crundwell M., Ferguson D., Lee B.P., Harries L.W. Obesity impacts the regulation of miR-10b and its targets in primary breast tumors. BMC Cancer. 2019;19:86. doi: 10.1186/s12885-019-5300-6. PubMed DOI PMC

Lee J., Suk Ryu H., Sil Hong B., Lee H.-B., Lee M., Ae Park I., Kim J., Han W., Noh D.-Y., Moon H.-G. Transition into inflammatory cancer-associated adipocytes in breast cancer microenvironment requires microRNA regulatory mechanism. PLoS ONE. 2017;12:e0174126. doi: 10.1371/journal.pone.0174126. PubMed DOI PMC

Picon-Ruiz M., Pan C., Drews-Elger K., Jang K., Besser A.H., Zhao D., Morata-Tarifa C., Kim M., Ince T.A., Azzam D.J., et al. Interactions between Adipocytes and Breast Cancer Cells Stimulate Cytokine Production and Drive Src/Sox2/miR-302b–Mediated Malignant Progression. Cancer Res. 2016;76:491–504. doi: 10.1158/0008-5472.CAN-15-0927. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...