Prediction of lithium response using clinical data

. 2020 Feb ; 141 (2) : 131-141. [epub] 20191122

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31667829

Grantová podpora
Genome Canada - International
Dalhousie Department of Psychiatry Research Fund - International
64410 CIHR - Canada
Nova Scotia Health Research Foundation Scotia Scholars Graduate Scholarship - International
Killam Postgraduate Scholarship - International
64410 CIHR - Canada

OBJECTIVE: Promptly establishing maintenance therapy could reduce morbidity and mortality in patients with bipolar disorder. Using a machine learning approach, we sought to evaluate whether lithium responsiveness (LR) is predictable using clinical markers. METHOD: Our data are the largest existing sample of direct interview-based clinical data from lithium-treated patients (n = 1266, 34.7% responders), collected across seven sites, internationally. We trained a random forest model to classify LR-as defined by the previously validated Alda scale-against 180 clinical predictors. RESULTS: Under appropriate cross-validation procedures, LR was predictable in the pooled sample with an area under the receiver operating characteristic curve of 0.80 (95% CI 0.78-0.82) and a Cohen kappa of 0.46 (0.4-0.51). The model demonstrated a particularly low false-positive rate (specificity 0.91 [0.88-0.92]). Features related to clinical course and the absence of rapid cycling appeared consistently informative. CONCLUSION: Clinical data can inform out-of-sample LR prediction to a potentially clinically relevant degree. Despite the relevance of clinical course and the absence of rapid cycling, there was substantial between-site heterogeneity with respect to feature importance. Future work must focus on improving classification of true positives, better characterizing between- and within-site heterogeneity, and further testing such models on new external datasets.

Zobrazit více v PubMed

Grof P. Sixty years of lithium responders. Neuropsychobiology 2010;62:8-16.

Garnham J, Munro A, Slaney C et al. Prophylactic treatment response in bipolar disorder: results of a naturalistic observation study. J Affect Disord 2007;104:185-190.

Drancourt N, Etain B, Lajnef M et al. Duration of untreated bipolar disorder: missed opportunities on the long road to optimal treatment. Acta Psychiatr Scand 2013;127:136-144.

Hou L, Heilbronner U, Degenhardt F et al. Genetic variants associated with response to lithium treatment in bipolar disorder: a genome-wide association study. Lancet 2016;387:1085-1093.

Mertens J, Wang Q, Kim Y et al. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature 2015;527:95-99.

Stern S, Santos R, Marchetto M et al. Neurons derived from patients with bipolar disorder divide into intrinsically different sub-populations of neurons, predicting the patients’ responsiveness to lithium. Mol Psychiatry 2018;23:1453-1465.

Hui T, Kandola A, Shen L et al. A systematic review and meta-analysis of clinical predictors of lithium response in bipolar disorder. Acta Psychiatr Scand 2019;140:94-115.

Sportiche S, Geoffroy P, Brichant-Petitjean C et al. Clinical factors associated with lithium response in bipolar disorders. Aust N Z J Psychiatry 2017;51:524-530.

Grof P. Responders to long-term lithium treatment. In: Bauer M, Grof P, Muller-Oerlinghausen B, eds. Lithium in neuropsychiatry: the comprehensive guide. UK: Informa Healthcare, 2006:157-178.

Grof P, Duffy A, Cavazzoni P et al. Is response to prophylactic lithium a familial trait? J Clin Psychiatry 2002;63:942-947.

Kessing L. Lithium as the drug of choice for maintenance treatment in bipolar disorder. Acta Psychiatr Scand 2019;140:91-93.

Kim T, Dufour S, Xu C et al. Predictive modeling for response to lithium and quetiapine in bipolar disorder. Bipolar Disord 2019;21:428-436.

Nierenberg A, McElroy S, Ketter T et al. Bipolar CHOICE (Clinical Health Outcomes Initiative in Comparative Effectiveness): a pragmatic six month trial of lithium vs. quetiapine for bipolar disorder. J Clin Psychiatry 2016;77:90-99.

Manchia M, Adli M, Akula N et al. Assessment of response to lithium maintenance treatment in bipolar disorder: a consortium on lithium genetics (ConLiGen) report. PLoS ONE 2013;8:e65636.

McGuffin P, Farmer A, Harvey I. A polydiagnostic application of operational criteria in studies of psychotic illness: development and reliability of the OPCRIT system. Arch Gen Psychiatry 1991;48:764-770.

Denicoff K, Ali S, Sollinger A, Smith-Jackson E, Leverich G, Post R. Utility of the daily prospective National Institute of Mental Health Life-Chart Method (NIMH-LCM-P) ratings in clinical trials of bipolar disorder. Depression Anxiety 2002;15:1-9.

Fay MP, Shaw PA. Exact and asymptotic weighted logrank tests for interval censored data: the interval R package. J Stat Softw 2010;36:1-34.

Breiman L. Random forests. Mach Learn 2001;45:5-32.

Pedregosa F, Varoquaux G, Gramfort A et al. Scikit-learn: machine learning in python. J Mach Learn Res 2012;12:2825-2830.

He H, Garcia E. Learning from imbalanced data sets. IEEE Trans Knowl Data Eng 2010;21:1263-1264.

Lemaitre G, Nogueira F, Aridas C. Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning. J Machine Learn Res 2017;18:1-5.

Schnack H, Kahn R. Detecting neuroimaging biomarkers for psychiatric disorders: sample size matters. Front Psychiatry 2016;7:1-12.

Nunes A, Schnack H, Ching C et al. Using structural MRI to identify bipolar disorders - 13 site machine learning study in 3020 individuals from the ENIGMA Bipolar Disorders Working Group. Mol Psychiatry 2018;1-14.

Grof P, Alda M, Grof E, Zvolsky P, Walsh M. Lithium response and genetics of affective disorders. J Affect Disord 1994;32:85-95.

Backlund L, Ehnvall A, Hetta J, Isacsson G, Ågren H. Identifying predictors for good lithium response-a retrospective analysis of 100 patients with bipolar disorder using a life-charting method. European Psychiatry. 2009;24:171-177.

Tondo L, Hennen J, Baldessarini R. Rapid-cycling bipolar disorder: effects of long-term treatments. Acta Psychiatr Scand 2003;108:4-14.

Kessing L, Hellmund G, Andersen P. Predictors of excellent response to lithium: results from a nationwide register-based study. Int Clin Psychopharmacol 2011;26:323-328.

Kessing L, Vradi E, Andersen P. Starting lithium prophylaxis early v. Late in bipolar disorder. Br J Psychiatry. 2014;205:214-220.

Turecki G, Grof P, Cavazzoni P et al. Evidence for a role of phospholipase C-γ1 in the pathogenesis of bipolar disorder. Mol Psychiatry 1998;3:534-538.

Turecki G, Grof P, Grof E et al. Mapping susceptibility genes for bipolar disorder: a pharmacogenetic approach based on excellent response to lithium. Mol Psychiatry 2001;6:570-578.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...