Poly[N-(2-hydroxypropyl)methacrylamide]-Modified Magnetic γ-F2 O3 Nanoparticles Conjugated with Doxorubicin for Glioblastoma Treatment
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- Keywords
- N-(2-hydroxypropyl)methacrylamide, cancer treatment, doxorubicin, iron oxide, magnetic,
- MeSH
- Acrylamides chemistry MeSH
- Doxorubicin chemistry metabolism pharmacology MeSH
- Glioblastoma pathology MeSH
- Humans MeSH
- Magnetite Nanoparticles chemistry MeSH
- Cell Line, Tumor MeSH
- Drug Carriers chemistry MeSH
- Polymers chemistry MeSH
- Cell Proliferation MeSH
- Antineoplastic Agents chemistry metabolism pharmacology MeSH
- Gene Expression Regulation, Neoplastic drug effects MeSH
- Drug Liberation MeSH
- Cell Survival drug effects MeSH
- Ferric Compounds chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Acrylamides MeSH
- Doxorubicin MeSH
- ferric oxide MeSH Browser
- Magnetite Nanoparticles MeSH
- N-(2-hydroxypropyl)methacrylamide MeSH Browser
- Drug Carriers MeSH
- Polymers MeSH
- Antineoplastic Agents MeSH
- Ferric Compounds MeSH
With the aim to develop a new anticancer agent, we prepared poly[N-(2-hydroxypropyl)methacrylamide-co-methyl 2-methacrylamidoacetate] [P(HP-MMAA)], which was reacted with hydrazine to poly[N-(2-hydroxypropyl)methacrylamide-co-N-(2-hydrazinyl-2-oxoethyl)methacrylamide] [P(HP-MAH)] to conjugate doxorubicin (Dox) via hydrazone bond. The resulting P(HP-MAH)-Dox conjugate was used as a coating of magnetic γ-Fe2 O3 nanoparticles obtained by the coprecipitation method. In vitro toxicity of various concentrations of Dox, P(HP-MAH)-Dox, and γ-Fe2 O3 @P(HP-MAH)-Dox nanoparticles was determined on somatic healthy cells (human bone marrow stromal cells hMSC), human glioblastoma line (GaMG), and primary human glioblastoma (GBM) cells isolated from GBM patients both at a short and prolonged exposition time (up to 7 days). Due to hydrolysis of the hydrazone bond in acid milieu of tumor cells and Dox release, the γ-Fe2 O3 @P(HP-MAH)-Dox nanoparticles significantly decreased the GaMG and GBM cell growth compared to free Dox and P(HP-MAH)-Dox in low concentration (10 nM), whereas in hMSCs it remained without effect. γ-F2 O3 @PHP nanoparticles alone did not affect the viability of any of the tested cells.
See more in PubMed
W. A. Denny, Anti-Cancer Drug Des. 1989, 4, 241-249.
A. Akbarzadeh, H. Mikaeili, N. Zarghami, R. Mohammad, A. Barkhordari, S. Davaran , Int. J. Nanomed. 2012, 7, 511-526.
L. Annovazzi, V. Caldera, M. Mellai, C. Riganti, L. Battaglia, D. Chirio, A. Melcarne, D. Schiffer, Int. J. Oncol. 2015, 46, 2299-2308.
B. Chertok, B. A. Moffat, A. E. David, F. Q. Yu, C. Bergemann, B. D. Ross, V. C. Yang, Biomaterials 2008, 29, 487-496.
J. Estelrich, M. J. Sánchez-Martín, M. A. Busquets, Int. J. Nanomed. 2015, 10, 1727-1741.
D. Chang, M. Lim, J. A. C. M. Goos, R. R. Qiao, Y. Y. Ng, F. M. Mansfeld, M. Jackson, T. P. Davis, M. Kavallaris, Front. Pharmacol. 2018, 9, 831.
H. Wang, R. Yang, L. Yang, W. Tan, ACS Nano 2009, 3, 2451-2460.
G. F. Woodworth, G. P. Dunn, E. A. Nance, J. Hanes, H. Brem, Front. Oncol. 2014, 4, 126.
D. Horák, M. Babič, H. Macková, M. J. Beneš, J. Sep. Sci. 2007, 30, 1751-1772.
R. P. Garay, R. El-Gewely, J. K. Armstrong, G. Garratty, P. Richette, Expert Opin. Drug Delivery 2012, 9, 1319-1323.
E. Paluska, A. Hrubá, O. Štĕrba, J. Kopeček, Folia Biol. 1986, 32, 91-102.
X. Zhang, S. Malhotra, M. Molina, R. Haag, Chem. Soc. Rev. 2015, 44, 1948-1973.
Z. Plichta, Y. Kozak, R. Panchuk, V. Sokolova, M. Epple, L. Kobylinska, P. Jendelová, D. Horák, Beilstein J. Nanotechnol. 2018, 9, 2533-2545.
E. Hara, M. Ueda, C. J. Kim, A. Makino, I. Hara, E. Ozeki, S. Kimura, J. Pept. Sci. 2014, 20, 570-577.
K. H. A. Lau, C. L. Ren, T. S. Sileika, S. H. Park, I. Szleifer, P. B. Messersmith, Langmuir 2012, 28, 16099-16107.
C. Hortz, A. Birke, L. Kaps, S. Decker, E. Wachtersbach, K. Fischer, D. Schuppan, M. Barz, M. Schinidt, Macromolecules 2015, 48, 2074-2086.
D. Huesmann, A. Sevenich, B. Weber, M. Barz, Polymer 2015, 67, 240-248.
C. J. Serna, M. P. Morales, in Surface and Colloids Science, Vol. 17 (Eds.: E. Matijević, M. Borkovec), Kluwer Academic, New York, 2004, pp. 27-81.
B. A. Zasońska, N. Boiko, O. Klyuchivska, M. Trchová, E. Petrovský, R. Stoika, D. Horák, J. Nanopharm. Drug Deliv. 2013, 1, 182-192.
V. Patsula, E. Petrovský, J. Kovářová, R. Konefal, D. Horák Colloid Polym. Sci. 2014, 292, 2097-2110.
J. Kopeček, P. Kopečková, Adv. Drug Delivery Rev. 2010, 62, 122-149.
C. M. Peterson, J. G. Shiah, Y. Sun, P. Kopeckova, T. Minko, R. C. Straight, J. Kopecek, in Polymer Drugs in the Clinical Stage (Eds. H. Maeda, A. Kabanov, K. Kataoka, T. Okano), Kluwer Academic, New York, 2003, pp. 101-123.
K. Luo, J. Yang, P. Kopečková, J. Kopeček, Macromolecules 2011, 44, 2481-2488.
T. Etrych, M. Jelínková, B. Říhová, K. Ulbrich, J. Controlled Release 2001, 73, 89-102.
Genomics of Drug Sensitivity in Cancer, https://www.cancerrxgene.org/.
A. C. Alves, A. Magarkar, M. Horta, J. L. F. C. Lima, A. Bunker, C. Nunes, S. Reis, Sci. Rep. 2017, 7, 6343.
K. Ulbrich, V. Šubr, J. Strohalm, D. Plocová, M. Jelínková, B. Říhová, J. Controlled Release 2000, 64, 63-79.
M. Babič, D. Horák, M. Trchová, P. Jendelova, K. Glogarová, P. Lesný, V. Herynek, M. Hájek, E. Syková, Bioconjugate Chem. 2008, 19, 740-750.
L. A. Akslen, K. J. Andersen, R. Bjerkvig, Anticancer Res. 1988, 8, 797-803.
M. Dominici, K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. C. Marini, D. S. Krause, R. J. Deans, A. Keating, D. J. Prockop, E. M. Horwitz, Cytotherapy 2006, 8, 315-317.
K. Turnovcova, K. Ruzickova, V. Vanecek, E. Sykova, P. Jendelova, Cytotherapy. 2009, 11, 874-885.
Metal Oxide Nanoparticles: Review of Synthesis, Characterization and Biological Effects