Synthesis and identification of deschloroketamine metabolites in rats' urine and a quantification method for deschloroketamine and metabolites in rats' serum and brain tissue using liquid chromatography tandem mass spectrometry

. 2020 Mar ; 12 (3) : 343-360. [epub] 20200115

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31670910

Grantová podpora
AZV CR 17-31852A Specific University Research
PROGRES Q35, Specific University Research
21-SVV/2019 Specific University Research
21-SVV/2018 Specific University Research
MV0/VI20172020056 MEYS CR under the NPU I program, Ministry of the Interior of the Czech Republic
LO1611 project OPPC CZ.2.16/3.1.00/21537
NPU I LO1601 project OPPC CZ.2.16/3.1.00/21537

Deschloroketamine (2-(methylamino)-2-phenyl-cyclohexanone) is a ketamine analog belonging to a group of dissociative anesthetics, which have been distributed within the illicit market since 2015. However, it was also being sold as 'ketamine' misleading people to believe that they were getting genuine ketamine. Dissociative anesthetics have also come to the attention of the psychiatric field due to their potential properties in the treatment of depression. At present, there is a dearth of information on deschloroketamine related to its metabolism, biodistribution, and its mechanism of action. We have therefore carried out a metabolomics study for deschloroketamine via non-targeted screening of urine samples employing liquid chromatography combined with high-resolution mass spectrometry. We developed and validated a multiple reaction monitoring method using a triple quadrupole instrument to track metabolites of deschloroketamine. Furthermore, significant metabolites of deschloroketamine, (trans-dihydrodeschloroketamine, cis- and trans-dihydronordeschloroketamine, and nordeschloroketamine), were synthesized in-house. The prepared standards were utilized in the developed multiple reaction monitoring method. The quantification method for serum samples provided intra-day accuracy ranging from 86% to 112% with precision of 3% on average. The concentrations of cis/trans-dihydronordeschloroketamines and trans-dihydrodeschloroketamine were lower than 10 ng/mL, nordeschloroketamine and deschloroketamine ranged from 0.5 to 860 ng/mL in real samples. The quantification method for brain tissue provided intra-day accuracy ranging from 80% to 125% with precision of 7% on average. The concentrations of cis/trans-dihydronordeschloroketamines and trans-dihydrodeschloroketamine ranged from 0.5 to 70 ng/g, nordeschloroketamine and deschloroketamine varied from 0.5 to 4700 ng/g in real samples.

Zobrazit více v PubMed

UNODC - United Nations Office on Drugs and Crime. Understanding the synthetic drug market: the NPS factor. Vol. 19, Global Smart Update. 2018. https://www.unodc.org/documents/scientific/Global_Smart_Update_2018_Vol.19.pdf. Accessed 3 April 2019.

UNODC - United Nations Office on Drugs and Crime. World Drug Report 2018. Executive summary, conclusions and policy implications. 2018. https://www.unodc.org/wdr2018/prelaunch/WDR18_Booklet_1_EXSUM.pdf. Accessed 3 April 2019.

EMCDDA - European Monitoring Centre for Drugs and Drug Addiction and Europol. EDND - European information system and database on new drugs. Early Warning System on NPS; 2019. https://ednd.emcdda.europa.eu/html.cfm/index6553EN.html. Accessed 25 March 2019.

Mollerup CB, Dalsgaard PW, Mardal M, Linnet K. Targeted and non-targeted drug screening in whole blood by UHPLC-TOF-MS with data-independent acquisition. Drug Test Anal. 2017;9(7):1052-1061. https://doi.org/10.1002/dta.2120

Anis NA, Berry SC, Burton NR, Lodge D. The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br J Pharmacol. 1983;79(2):565-575. https://doi.org/10.1111/j.1476-5381.1983.tb11031.x

McLaughlin G, Morris N, Kavanagh PV, et al. Test purchase, synthesis, and characterization of 2-methoxydiphenidine (MXP) and differentiation from its meta - and Para -substituted isomers. Drug Test Anal. 2016;8(1):98-109. https://doi.org/10.1002/dta.1800

Morris H, Wallach J. From PCP to MXE: a comprehensive review of the non-medical use of dissociative drugs. Drug Test Anal. 2014;6(7-8):614-632. https://doi.org/10.1002/dta.1620

Thornton S, Lisbon D, Lin T, Gerona R. Beyond ketamine and phencyclidine: analytically confirmed use of multiple novel arylcyclohexylamines. J Psychoactive Drugs. 2017;49(4):289-293. https://doi.org/10.1080/02791072.2017.1333660

Wallach J, Kang H, Colestock T, et al. Pharmacological investigations of the dissociative ‘legal highs' diphenidine, methoxphenidine and analogues. PLoS One. 2016;11(6): 1-17.e0157021. https://doi.org/10.1371/journal.pone.0157021

Dolgin E. Rapid antidepressant effects of ketamine ignite drug discovery. Nat Med. 2013;19(1):8-8. https://doi.org/10.1038/nm0113-8

Kavalali ET, Monteggia LM. The ketamine metabolite 2R,6R-hydroxynorketamine blocks NMDA receptors and impacts downstream signaling linked to antidepressant effects. Neuropsychopharmacology. 2018;43(1):221-222. https://doi.org/10.1038/npp.2017.210

Li N, Lee B, Liu R-J, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010;329(5994):959-964. https://doi.org/10.1126/science.1190287

Ossato A, Bilel S, Gregori A, et al. Neurological, sensorimotor and cardiorespiratory alterations induced by methoxetamine, ketamine and phencyclidine in mice. Neuropharmacology. 2018;141:167-180. https://doi.org/10.1016/j.neuropharm.2018.08.017

Yang Y, Cui Y, Sang K, et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature. 2018;554(7692):317-322. https://doi.org/10.1038/nature25509

Zanos P, Gould TD. Mechanisms of ketamine action as an antidepressant. Mol Psychiatry. 2018;23(4):801-811. https://doi.org/10.1038/mp.2017.255

Zanos P, Moaddel R, Morris PJ, et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature. 2016;533(7604):481-486. https://doi.org/10.1038/nature17998

Zanos P, Moaddel R, Morris PJ, et al. Ketamine and ketamine metabolite pharmacology: insights into therapeutic mechanisms. Pharmacol Rev. 2018;70(3):621-660. https://doi.org/10.1124/pr.117.015198

Zhang K, Fujita Y, Hashimoto K. Lack of metabolism in (R)-ketamine's antidepressant actions in a chronic social defeat stress model. Sci Rep. 2018;8(1):1-8.4007. https://doi.org/10.1038/s41598-018-22449-9

Stevens CL. Aminocétones et leurs procédés de préparation. BE634208. Detroit, MI, USA. 1963.

Stevens CL. Amino ketones and methods for their production. US3254124. Parke Davis and Co. Detroit, MI, USA. 1966

Stevens CL, Elliott RD, Winch BL. Aminoketone rearrangements. II. The rearrangement of phenyl α-aminoketones. J Am Chem Soc. 1963;85(10):1464-1470. https://doi.org/10.1021/ja00893a018

Frison G, Zamengo L, Zancanaro F, Tisato F, Traldi P. Characterization of the designer drug deschloroketamine (2-methylamino-2-phenylcyclohexanone) by gas chromatography/mass spectrometry, liquid chromatography/high-resolution mass spectrometry, multistage mass spectrometry, and nuclear magnetic resonance. Rapid Commun Mass Spectrom. 2016;30(1):151-160. https://doi.org/10.1002/rcm.7425

Jurásek B, Králík F, Rimpelová S, et al. Synthesis, absolute configuration and in vitro cytotoxicity of deschloroketamine enantiomers: rediscovered and abused dissociative anaesthetic. New J Chem. 2018;42(24):19360-19368. https://doi.org/10.1039/C8NJ03107J

Maixner J, Jurásek B, Kohout M, Kuchař M, Kačer P. X-ray powder diffraction data for (S)-deschloroketamine hydrochloride, C13H18ClNO. Powder Diffr. 2017;32(3):193-195. https://doi.org/10.1017/S0885715617000586

Lambdasyn. Synthese von 2-Methylamino-2-Phenylcyclohexanon (MPCH) 2015. http://www.lambdasyn.org/synfiles/mpch.htm. Accessed 17 August 2016.

European Commission. Amendment of Minister for Human Capacities Decree No 55/2014 of 30 December 2014 on substances or groups of compounds classified as new psychoactive substances (the ‘Decree'). Notification detail; 2016. https://ec.europa.eu/growth/tools-databases/tris/en/index.cfm/search/?trisaction=search.detail&year=2016&num=642&mLang=CS. Accessed 3 March 2019.

Ministerio Del Interior y Seguridad Pública. Mesa Nacional de Nuevas Sustancias Psicoactivas. Informe N°3, 2017. https://www.interior.gob.cl/media/2018/03/Informe-N-3-Mesa-NSP-2017.pdf. Accessed 5 March 2019.

Menzies EL, Hudson SC, Dargan PI, Parkin MC, Wood DM, Kicman AT. Characterizing metabolites and potential metabolic pathways for the novel psychoactive substance methoxetamine. Drug Test Anal. 2014;6(6):506-515. https://doi.org/10.1002/dta.1541

Users on Erowid. Deschloroketamine. Reports from Erowid, 2019. https://erowid.org/experiences/subs/exp_Deschloroketamine.shtml. Accessed 10 August 2019.

Thedrugclassroom. Deschloroketamine. Thedrugclassroom webpage, 2017. https://thedrugclassroom.com/video/deschloroketamine/%0A. Accessed 10 August 2019.

Tripsit. Deschloroketamine. Tripsit, 2017. http://drugs.tripsit.me/deschloroketamine%0A. Accessed 10 August 2019.

Theofel N, Möller P, Vejmelka E, et al. A fatal case involving N-Ethyldeschloroketamine (2-Oxo-PCE) and venlafaxine. J Anal Toxicol. 2019;43(2):e2-e6. https://doi.org/10.1093/jat/bky063

Dinis-Oliveira RJ. Metabolism and metabolomics of ketamine: a toxicological approach. Forensic Sci Res. 2017;2(1):2-10. https://doi.org/10.1080/20961790.2017.1285219

Lin HR, Lua AC. Detection of acid-labile conjugates of ketamine and its metabolites in urine samples collected from pub participants. J Anal Toxicol. 2004;28(3):181-186. https://doi.org/10.1093/jat/28.3.181

Turfus SC, Parkin MC, Cowan DA, et al. Use of human microsomes and deuterated substrates: an alternative approach for the identification of novel metabolites of ketamine by mass spectrometry. Drug Metab Dispos. 2009;37(8):1769-1778. https://doi.org/10.1124/dmd.108.026328

Wallach J, Brandt SD. 1,2-Diarylethylamine- and ketamine-based new psychoactive substances. In: Handbook of Experimental Pharmacology, ed. Maurer HH, Brandt SD. Springer; 2018:305-352. Doi: https://doi.org/10.1007/164_2018_148

Portmann S, Kwan HY, Theurillat R, Schmitz A, Mevissen M, Thormann W. Enantioselective capillary electrophoresis for identification and characterization of human cytochrome P450 enzymes which metabolize ketamine and norketamine in vitro. J Chromatogr A. 2010;1217(51):7942-7948. https://doi.org/10.1016/j.chroma.2010.06.028

Wang P-F, Neiner A, Lane TR, Zorn KM, Ekins S, Kharasch ED. Halogen substitution influences ketamine metabolism by cytochrome P450 2B6: in vitro and computational approaches. Mol Pharm. 2018;16(2):898-906. https://doi.org/10.1021/acs.molpharmaceut.8b01214

Adams JD, Baillie TA, Trevor AJ, Castagnoli N. Studies on the biotransformation of ketamine 1 - identification of metabolites produced in vitro from rat liver microsomal preparations. Biol Mass Spectrom. 1981;8(11):527-538. https://doi.org/10.1002/bms.1200081103

Desta Z, Moaddel R, Ogburn ET, et al. Stereoselective and regiospecific hydroxylation of ketamine and norketamine. Xenobiotica. 2012;42(11):1076-1087. https://doi.org/10.3109/00498254.2012.685777

Meyer MR, Bach M, Welter J, Bovens M, Turcant A, Maurer HH. Ketamine-derived designer drug methoxetamine: metabolism including isoenzyme kinetics and toxicological detectability using GC-MS and LC-(HR-)MSn. Anal Bioanal Chem. 2013;405(19):6307-6321. https://doi.org/10.1007/s00216-013-7051-6

Fagiola M, Hahn T, Avella J. Screening of novel psychoactive substances in postmortem matrices by liquid chromatography-tandem mass spectrometry (LC-MS-MS)†. J Anal Toxicol. 2018;42(8):562-569. https://doi.org/10.1093/jat/bky050

Crotti P, Chini M, Uccello-Barretta G, Macchia F. Nucleophilic attack on iodonium ion intermediate. “Real” regiochemistry of the iodo azide adduct of 1-phenylcyclohexene and of its dehydrohalogenation product. J Org Chem. 1989;54(19):4525-4529. https://doi.org/10.1021/jo00280a016

Hajkova K, Jurasek B, Sykora D, Palenicek T, Miksatkova P, Kuchar M. Salting-out-assisted liquid-liquid extraction as a suitable approach for determination of methoxetamine in large sets of tissue samples. Anal Bioanal Chem. 2016;408(4):1171-1181. https://doi.org/10.1007/s00216-015-9221-1

Gerostamoulos D, Elliott S, Walls HC, Peters FT, Lynch M, Drummer OH. To measure or not to measure? That is the NPS question. J Anal Toxicol. 2016;40(4):318-320. https://doi.org/10.1093/jat/bkw013

Peters FT, Drummer OH, Musshoff F. Validation of new methods. Forensic Sci Int. 2007;165(2-3):216-224. https://doi.org/10.1016/j.forsciint.2006.05.021

Scientific Working Group for Forensic Toxicology. Scientific Working Group for Forensic Toxicology (SWGTOX) standard practices for method validation in forensic toxicology. J Anal Toxicol. 2013;37(7):452-474. https://doi.org/10.1093/jat/bkt054

Stevens CL, TerBeek KJ, Pillai PM. Stereochemistry of the reduction of α-amino ketones. J Org Chem. 1974;39(26):3943-3946. https://doi.org/10.1021/jo00940a035

Dwivedi P, Zhou X, Powell TG, Calafat AM, Ye X. Impact of enzymatic hydrolysis on the quantification of total urinary concentrations of chemical biomarkers. Chemosphere. 2018;199:256-262. https://doi.org/10.1016/J.CHEMOSPHERE.2018.01.177

ElSohly MA, Gul W, Feng S, Murphy TP. Hydrolysis of conjugated metabolites of buprenorphine II. The quantitative enzymatic hydrolysis of norbuprenorphine-3-β-D-glucuronide in human urine. J Anal Toxicol. 2005;29(6):570-573. https://doi.org/10.1093/jat/29.6.570

Pirnay SO, Abraham TT, Lowe RH, Huestis MA. Selection and optimization of hydrolysis conditions for the quantification of urinary metabolites of MDMA. J Anal Toxicol. 2006;30(8):563-569. https://doi.org/10.1093/jat/30.8.563

Andra SS, Austin C, Patel D, Dolios G, Awawda M, Arora M. Trends in the application of high-resolution mass spectrometry for human biomonitoring: an analytical primer to studying the environmental chemical space of the human exposome. Environ Int. 2017;100:32-61. https://doi.org/10.1016/j.envint.2016.11.026

Ibáñez M, Sancho JV, Bijlsma L, van Nuijs ALN, Covaci A, Hernández F. Comprehensive analytical strategies based on high-resolution time-of-flight mass spectrometry to identify new psychoactive substances. TrAC Trends Anal Chem. 2014;57:107-117. https://doi.org/10.1016/j.trac.2014.02.009

Horsley RR, Lhotkova E, Hajkova K, Jurasek B, Kuchar M, Palenicek T. Detailed pharmacological evaluation of methoxetamine (MXE), a novel psychoactive ketamine analogue - Behavioural, pharmacokinetic and metabolic studies in the Wistar rat. Brain Res Bull. 2016;126(Pt 1):102-110. https://doi.org/10.1016/j.brainresbull.2016.05.002

Jurasek B, Himl M, Jurok R, et al. Synthesis of methoxetamine, its metabolites and deuterium labelled analog as analytical standards and their HPLC and chiral capillary electrophoresis separation. RSC Adv. 2017;7(89):56691-56696. https://doi.org/10.1039/C7RA10893A

Altomare A, Cascarano G, Giacovazzo C, et al. SIR 92 - a program for automatic solution of crystal structures by direct methods. J Appl Cryst. 1994;27(3):435-435. https://doi.org/10.1107/S002188989400021X

Betteridge PW, Carruthers JR, Cooper RI, Prout K, Watkin DJ. CRYSTALS version 12: software for guided crystal structure analysis. J Appl Cryst. 2003;36(6):1487-1487. https://doi.org/10.1107/S0021889803021800

Spek, A.L. (2003). PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...