• This record comes from PubMed

First Attempts of the Use of 195Pt NMR of Phenylbenzothiazole Complexes as Spectroscopic Technique for the Cancer Diagnosis

. 2019 Nov 02 ; 24 (21) : . [epub] 20191102

Language English Country Switzerland Media electronic

Document type Journal Article

Links

PubMed 31684009
PubMed Central PMC6864663
DOI 10.3390/molecules24213970
PII: molecules24213970
Knihovny.cz E-resources

Platinum complexes have been studied for cancer treatment for several decades. Furthermore, another important platinum characteristic is related to its chemical shifts, in which some studies have shown that the 195Pt chemical shifts are very sensitive to the environment, coordination sphere, and oxidation state. Based on this relevant feature, Pt complexes can be proposed as potential probes for NMR spectroscopy, as the chemical shifts values will be different in different tissues (healthy and damaged) Therefore, in this paper, the main goal was to investigate the behavior of Pt chemical shifts in the different environments. Calculations were carried out in vacuum, implicit solvent, and inside the active site of P13K enzyme, which is related with breast cancer, using the density functional theory (DFT) method. Moreover, the investigation of platinum complexes with a selective moiety can contribute to early cancer diagnosis. Accordingly, the Pt complexes selected for this study presented a selective moiety, the 2-(4'aminophenyl)benzothiazole derivative. More specifically, two Pt complexes were used herein: One containing chlorine ligands and one containing water in place of chlorine. Some studies have shown that platinum complexes coordinated to chlorine atoms may suffer hydrolyses inside the cell due to the low chloride ion concentration. Thus, the same calculations were performed for both complexes. The results showed that both complexes presented different chemical shift values in the different proposed environments. Therefore, this paper shows that platinum complexes can be a potential probe in biological systems, and they should be studied not only for cancer treatment, but also for diagnosis.

See more in PubMed

Siegel R.L., Miller K.D., Jemal A. Cancer Statistics, 2018. CA Cancer J. Clin. 2018;68:7–30. doi: 10.3322/caac.21442. PubMed DOI

Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI

Jafari S., Saadatpour Z., Salmaninejad A., Momeni F., Mokhtari M., Nahand J.S., Rahmati M., Mirzaei H., Kianmehr M. Breast cancer diagnosis: Imaging techniques and biochemical markers. J. Cell. Physiol. 2018;233:5200–5213. doi: 10.1002/jcp.26379. PubMed DOI

Park J.V., Park S.J., Yoo J.S. Finding characteristics of exceptional breast cancer subpopulations using subgroup mining and statistical test. Expert Syst. Appl. 2019;118:553–562. doi: 10.1016/j.eswa.2018.10.016. DOI

Wang Y., Zhang G., Hao X., Ma Y., Ma M., Yan X., Jiang X., Bie F., Yuan N. Potential biomarker for breast cancer screening: A systematic review and meta-analysis. Futur. Gener. Comput. Syst. 2019;91:518–526. doi: 10.1016/j.future.2018.09.030. DOI

Zonouzy V.T., Niknami S., Ghofranipour F., Montazeri A. An educational intervention based on the extended parallel process model to improve attitude, behavioral intention, and early breast cancer diagnosis: A randomized trial. Int. J. Women’s Health. 2019;11:1–10. doi: 10.2147/IJWHS182146. PubMed DOI PMC

Heneghan H.M., Miller N., Kelly R., Newell J., Kerin M.J. Systemic miRNA-195 Differentiates Breast Cancer from Other Malignancies and Is a Potential Biomarker for Detecting Noninvasive and Early Stage Disease. Oncologist. 2010;15:673–682. doi: 10.1634/theoncologist.2010-0103. PubMed DOI PMC

Cui X., Li Z., Zhao Y., Song A., Shi Y. Breast cancer identification via modeling of peripherally circulating miRNAs. PeerJ. 2018;6:e4551. doi: 10.7717/peerj.4551. PubMed DOI PMC

Khalkhali I., Mena I., Diggles L. Review of imaging techniques for the diagnosis of breast cancer: A new role of prone scintimammography using technetium-99m sestamibi. Eur. J. Nucl. Med. 1994;21:357–362. doi: 10.1007/BF00947973. PubMed DOI

Pereira B.T.L., Silva E.F., Gonçalves M.A., Mancini D.T., Ramalho T.C. Exploring EPR Parameters of99Tc Complexes for Designing New MRI Probes: Coordination Environment, Solvent, and Thermal Effects on the Spectroscopic Properties. J. Chem. 2017;2017:8102812. doi: 10.1155/2017/8102812. DOI

Duffy M.J., Harbeck N., Nap M., Molina R., Nicolini A., Senkus E., Cardoso F. Clinical use of biomarkers in breast cancer: Updated guidelines from the European Group on Tumor Markers (EGTM) Eur. J. Cancer. 2017;75:284–298. doi: 10.1016/j.ejca.2017.01.017. PubMed DOI

Kurozumi S., Yamaguchi Y., Kurosumi M., Ohira M., Matsumoto H., Horiguchi J. Recent trends in microRNA research into breast cancer with particular focus on the associations between microRNAs and intrinsic subtypes. J. Hum. Genet. 2017;62:15–24. doi: 10.1038/jhg.2016.89. PubMed DOI

Mavroidi B., Sagnou M., Stamatakis K., Paravatou-petsotas M., Pelecanou M., Methenitis C. Palladium (II) and platinum (II) complexes of derivatives of 2-(40-aminophenyl) benzothiazole as potential anticancer agents. Inorg. Chim. Acta. 2016;444:63–75. doi: 10.1016/j.ica.2016.01.012. DOI

Mancini D.T., Souza E.F., Caetano M.S., Ramalho T.C. 99Tc NMR as a promising technique for structural investigation of biomolecules: Theoretical studies on the solvent and thermal effects of phenylbenzothiazole complex. Magn. Reson. Chem. 2014;53:129–137. doi: 10.1002/mrc.4043. PubMed DOI

Rosernberg B., Vancamp L., Krigas T. Inhibition of Cell Division in Escherichia coli by Electrolysis Products from a Platinum Electrode. Nature. 1965;205:698–699. doi: 10.1038/205698a0. PubMed DOI

Weiss R.B., Christian M.C. New Cisplatin Analogues in Development. A review. Drugs. 1993;46:360–377. doi: 10.2165/00003495-199346030-00003. PubMed DOI

Dasari S., Tchounwou P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014;740:364–378. doi: 10.1016/j.ejphar.2014.07.025. PubMed DOI PMC

Deo K.M., Ang D.L., Mcghie B., Rajamanickam A., Dhiman A., Khoury A., Holland J., Bjelosevic A., Pages B., Gordon C., et al. platinum coordination compounds with potent anticancer activity. Coord. Chem. Rev. 2018;375:148–163. doi: 10.1016/j.ccr.2017.11.014. DOI

Brabec V., Hrabina O., Kasparkova J. Cytotoxic platinum coordination compounds. DNA binding agents. Coord. Chem. Rev. J. 2017;351:2–31. doi: 10.1016/j.ccr.2017.04.013. DOI

Solomon V.R., Hu C., Lee H. Hybrid pharmacophore design and synthesis of isatin-benzothiazole analogs for their anti-breast cancer activity. Bioorg. Med. Chem. 2009;17:7585–7592. doi: 10.1016/j.bmc.2009.08.068. PubMed DOI

Abdelgawad M.A., Belal A., Omar H.A., Hegazy L., Rateb M.E. Synthesis, Anti-Breast Cancer Activity, and Molecular Modeling of Some Benzothiazole and Benzoxazole Derivatives. Arch. Pharm. Chem. Life Sci. 2013;346:534–541. doi: 10.1002/ardp.201300044. PubMed DOI

Ahmad S. Kinetic aspects of platinum anticancer agents. Polyhedron. 2017;138:109–124. doi: 10.1016/j.poly.2017.09.016. DOI

Benedetti M., Girelli C.R., Antonucci D., Fanizzi F.P. [PtCl(η1-CH2-CH2OR)(NN). and [PtCl(η2-CH2CH2)(NN).+, NN = dinitrogen ligand, complexes. Sterical and electronic effects evidenced by NMR analysis. J. Organomet. Chem. 2014;771:40–46. doi: 10.1016/j.jorganchem.2014.05.014. DOI

Benedetti M., Antonucci D., Fanizzi F.P., Papadia P., de Castro F. General cooperative effects of single atom ligands on a metal: A 195 Pt NMR chemical shift as a function of coordinated halido ligands’ ionic radii overall sum. Dalton Trans. 2015;44:15377–15381. doi: 10.1039/C5DT02285A. PubMed DOI

Benedetti M., Papadia P., Girelli C.R., De Castro F., Capitelli F., Fanizzi F.P. X-ray structures versus NMR signals in pentacoordinate [PtX2(η2-CH2=CH2)(Me2phen). (X = Cl, Br, I) complexes. Inorganica Chim. Acta. 2015;428:8–13. doi: 10.1016/j.ica.2015.01.003. DOI

Benedetti M., Antonucci D., Girelli C.R., Fanizzi F.P. Hindrance, Donor Ability of Men_NN Chelates and Overall Stability of Pentacoordinate [PtCl2(η2-CH2=CH2) (Men_NN). Complexes as Observed by η2-Olefin 1JPt,C Modulation: An NMR Study. Eur. J. Inorg. Chem. 2015:2308–2316. doi: 10.1002/ejic.201500103. DOI

Paschoal D., Guerra C.F., de Oliveira M.A., Ramalho T.C., Dos Santos H.F. Predicting Pt-195 NMR Chemical Shift Using New Relativistic All-Electron Basis Set. J. Comput. Chem. 2016;37:2360–2373. doi: 10.1002/jcc.24461. PubMed DOI

Still B.M., Kumar P.G.A., Aldrich-Wright J.R., Price W.S. 195Pt NMR—Theory and application. Chem. Soc. Rev. 2007;36:665–686. doi: 10.1039/B606190G. PubMed DOI

Thomsen R., Christensen M.H. MolDock: A New Technique for High-Accuracy Molecular Docking. J. Med. Chem. 2006;49:3315–3321. doi: 10.1021/jm051197e. PubMed DOI

Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI

Hay P.J., Wadt W.R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 1985;82:270–283. doi: 10.1063/1.448799. DOI

Weigend F., Ahlrichs R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence. Phys. Chem. Chem. Phys. 2005;7:3297–3305. doi: 10.1039/b508541a. PubMed DOI

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian 09. Gaussian, Inc.; Wallingford, CT, USA: 2009.

Barone V., Cossi M., Tomasi J. Geometry optimization of molecular structures in solution by the polarizable continuum model. J. Comput. Chem. 1998;19:404–417. doi: 10.1002/(SICI)1096-987X(199803)19:4<404::AID-JCC3>3.0.CO;2-W. DOI

Cancès E., Mennucci B., Tomasi J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997;107:3032–3041. doi: 10.1063/1.474659. DOI

Gonçalves M.A., Santos L.S., Prata D.M., Peixoto F.C., da Cunha E.F.F., Ramalho T.C. Optimal wavelet signal compression as an efficient alternative to investigate molecular dynamics simulations: Application to thermal and solvent effects of MRI probes. Theor. Chem. Acc. 2017;136:15. doi: 10.1007/s00214-016-2037-z. DOI

Iyengar S.S., Frisch M.J. Effect of time-dependent basis functions and their superposition error on atom- centered density matrix propagation (ADMP): Connections to wavelet theory of multiresolution analysis. J. Chem. Phys. 2004;121:5061–5070. doi: 10.1063/1.1780157. PubMed DOI

SciLab v 2.7 1989–2003 INRIA/ENPC. [(accessed on 30 October 2019)]; Available online: www.scilab.org.

Wolinski K., Hinton J.F., Pulay P. Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations. J. Am. Chem. Soc. 1990;112:8251–8260. doi: 10.1021/ja00179a005. DOI

Cheeseman J.R., Trucks G.W., Keith T.A., Frisch M.J. A comparison of models for calculating nuclear magnetic resonance shielding tensors. J. Chem. Phys. 1996;104:5497–5509. doi: 10.1063/1.471789. DOI

Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1997;78:1396. doi: 10.1103/PhysRevLett.78.1396. PubMed DOI

Ramalho T.C., Pereira C.M.P., Martins T.L.C., Figueroa-Villar J.D., Flores A.F.C. Theoretical and experimental 13C and 15N NMR investigation of guanylhydrazones in solution. Magn. Reson. Chem. 2003;41:983–988. doi: 10.1002/mrc.1299. DOI

D’Angelo N.D., Kim T.S., Andrews K., Booker S.K., Caenepeel S., Chen K., Amico D.D., Freeman D., Jiang J., Liu L., et al. Discovery and Optimization of a Series of Benzothiazole Phosphoinositide 3-Kinase (PI3K)/ Mammalian Target of Rapamycin (mTOR) Dual Inhibitors. J. Med. Chem. 2011;54:1789–1811. doi: 10.1021/jm1014605. PubMed DOI

Ramalho T.C., Taft C. Thermal and solvent effects on the NMR and UV parameters of some bioreductive drugs. J. Chem. Phy. 2005;123:54319. doi: 10.1063/1.1996577. PubMed DOI

Guimaraes A.P., França T.C., Oliveira A.A., Da Cunha E.F.F., Ramalho T.C. Design of New Chemotherapeutics Against the Deadly Anthrax Disease. Docking and Molecular Dynamics Studies of Inhibitors Containing Pyrrolidine and Riboamidrazone Rings on Nucleoside Hydrolase from Bacillus anthracis. J. Biomol. Struct. Dyn. 2011;28:455–470. doi: 10.1080/07391102.2011.10508588. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...