First Attempts of the Use of 195Pt NMR of Phenylbenzothiazole Complexes as Spectroscopic Technique for the Cancer Diagnosis
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
31684009
PubMed Central
PMC6864663
DOI
10.3390/molecules24213970
PII: molecules24213970
Knihovny.cz E-resources
- Keywords
- 195Pt NMR, biological systems, cancer diagnosis, platinum complexes,
- MeSH
- Coordination Complexes chemistry pharmacology MeSH
- Crystallography, X-Ray MeSH
- Humans MeSH
- Ligands MeSH
- Magnetic Resonance Spectroscopy MeSH
- Magnetic Resonance Imaging MeSH
- Models, Molecular MeSH
- Neoplasms diagnosis diagnostic imaging pathology MeSH
- Oxidation-Reduction MeSH
- Platinum chemistry pharmacology MeSH
- Thiazoles chemistry MeSH
- Water chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- 2-phenylbenzothiazole MeSH Browser
- Coordination Complexes MeSH
- Ligands MeSH
- Platinum MeSH
- Thiazoles MeSH
- Water MeSH
Platinum complexes have been studied for cancer treatment for several decades. Furthermore, another important platinum characteristic is related to its chemical shifts, in which some studies have shown that the 195Pt chemical shifts are very sensitive to the environment, coordination sphere, and oxidation state. Based on this relevant feature, Pt complexes can be proposed as potential probes for NMR spectroscopy, as the chemical shifts values will be different in different tissues (healthy and damaged) Therefore, in this paper, the main goal was to investigate the behavior of Pt chemical shifts in the different environments. Calculations were carried out in vacuum, implicit solvent, and inside the active site of P13K enzyme, which is related with breast cancer, using the density functional theory (DFT) method. Moreover, the investigation of platinum complexes with a selective moiety can contribute to early cancer diagnosis. Accordingly, the Pt complexes selected for this study presented a selective moiety, the 2-(4'aminophenyl)benzothiazole derivative. More specifically, two Pt complexes were used herein: One containing chlorine ligands and one containing water in place of chlorine. Some studies have shown that platinum complexes coordinated to chlorine atoms may suffer hydrolyses inside the cell due to the low chloride ion concentration. Thus, the same calculations were performed for both complexes. The results showed that both complexes presented different chemical shift values in the different proposed environments. Therefore, this paper shows that platinum complexes can be a potential probe in biological systems, and they should be studied not only for cancer treatment, but also for diagnosis.
See more in PubMed
Siegel R.L., Miller K.D., Jemal A. Cancer Statistics, 2018. CA Cancer J. Clin. 2018;68:7–30. doi: 10.3322/caac.21442. PubMed DOI
Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI
Jafari S., Saadatpour Z., Salmaninejad A., Momeni F., Mokhtari M., Nahand J.S., Rahmati M., Mirzaei H., Kianmehr M. Breast cancer diagnosis: Imaging techniques and biochemical markers. J. Cell. Physiol. 2018;233:5200–5213. doi: 10.1002/jcp.26379. PubMed DOI
Park J.V., Park S.J., Yoo J.S. Finding characteristics of exceptional breast cancer subpopulations using subgroup mining and statistical test. Expert Syst. Appl. 2019;118:553–562. doi: 10.1016/j.eswa.2018.10.016. DOI
Wang Y., Zhang G., Hao X., Ma Y., Ma M., Yan X., Jiang X., Bie F., Yuan N. Potential biomarker for breast cancer screening: A systematic review and meta-analysis. Futur. Gener. Comput. Syst. 2019;91:518–526. doi: 10.1016/j.future.2018.09.030. DOI
Zonouzy V.T., Niknami S., Ghofranipour F., Montazeri A. An educational intervention based on the extended parallel process model to improve attitude, behavioral intention, and early breast cancer diagnosis: A randomized trial. Int. J. Women’s Health. 2019;11:1–10. doi: 10.2147/IJWHS182146. PubMed DOI PMC
Heneghan H.M., Miller N., Kelly R., Newell J., Kerin M.J. Systemic miRNA-195 Differentiates Breast Cancer from Other Malignancies and Is a Potential Biomarker for Detecting Noninvasive and Early Stage Disease. Oncologist. 2010;15:673–682. doi: 10.1634/theoncologist.2010-0103. PubMed DOI PMC
Cui X., Li Z., Zhao Y., Song A., Shi Y. Breast cancer identification via modeling of peripherally circulating miRNAs. PeerJ. 2018;6:e4551. doi: 10.7717/peerj.4551. PubMed DOI PMC
Khalkhali I., Mena I., Diggles L. Review of imaging techniques for the diagnosis of breast cancer: A new role of prone scintimammography using technetium-99m sestamibi. Eur. J. Nucl. Med. 1994;21:357–362. doi: 10.1007/BF00947973. PubMed DOI
Pereira B.T.L., Silva E.F., Gonçalves M.A., Mancini D.T., Ramalho T.C. Exploring EPR Parameters of99Tc Complexes for Designing New MRI Probes: Coordination Environment, Solvent, and Thermal Effects on the Spectroscopic Properties. J. Chem. 2017;2017:8102812. doi: 10.1155/2017/8102812. DOI
Duffy M.J., Harbeck N., Nap M., Molina R., Nicolini A., Senkus E., Cardoso F. Clinical use of biomarkers in breast cancer: Updated guidelines from the European Group on Tumor Markers (EGTM) Eur. J. Cancer. 2017;75:284–298. doi: 10.1016/j.ejca.2017.01.017. PubMed DOI
Kurozumi S., Yamaguchi Y., Kurosumi M., Ohira M., Matsumoto H., Horiguchi J. Recent trends in microRNA research into breast cancer with particular focus on the associations between microRNAs and intrinsic subtypes. J. Hum. Genet. 2017;62:15–24. doi: 10.1038/jhg.2016.89. PubMed DOI
Mavroidi B., Sagnou M., Stamatakis K., Paravatou-petsotas M., Pelecanou M., Methenitis C. Palladium (II) and platinum (II) complexes of derivatives of 2-(40-aminophenyl) benzothiazole as potential anticancer agents. Inorg. Chim. Acta. 2016;444:63–75. doi: 10.1016/j.ica.2016.01.012. DOI
Mancini D.T., Souza E.F., Caetano M.S., Ramalho T.C. 99Tc NMR as a promising technique for structural investigation of biomolecules: Theoretical studies on the solvent and thermal effects of phenylbenzothiazole complex. Magn. Reson. Chem. 2014;53:129–137. doi: 10.1002/mrc.4043. PubMed DOI
Rosernberg B., Vancamp L., Krigas T. Inhibition of Cell Division in Escherichia coli by Electrolysis Products from a Platinum Electrode. Nature. 1965;205:698–699. doi: 10.1038/205698a0. PubMed DOI
Weiss R.B., Christian M.C. New Cisplatin Analogues in Development. A review. Drugs. 1993;46:360–377. doi: 10.2165/00003495-199346030-00003. PubMed DOI
Dasari S., Tchounwou P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014;740:364–378. doi: 10.1016/j.ejphar.2014.07.025. PubMed DOI PMC
Deo K.M., Ang D.L., Mcghie B., Rajamanickam A., Dhiman A., Khoury A., Holland J., Bjelosevic A., Pages B., Gordon C., et al. platinum coordination compounds with potent anticancer activity. Coord. Chem. Rev. 2018;375:148–163. doi: 10.1016/j.ccr.2017.11.014. DOI
Brabec V., Hrabina O., Kasparkova J. Cytotoxic platinum coordination compounds. DNA binding agents. Coord. Chem. Rev. J. 2017;351:2–31. doi: 10.1016/j.ccr.2017.04.013. DOI
Solomon V.R., Hu C., Lee H. Hybrid pharmacophore design and synthesis of isatin-benzothiazole analogs for their anti-breast cancer activity. Bioorg. Med. Chem. 2009;17:7585–7592. doi: 10.1016/j.bmc.2009.08.068. PubMed DOI
Abdelgawad M.A., Belal A., Omar H.A., Hegazy L., Rateb M.E. Synthesis, Anti-Breast Cancer Activity, and Molecular Modeling of Some Benzothiazole and Benzoxazole Derivatives. Arch. Pharm. Chem. Life Sci. 2013;346:534–541. doi: 10.1002/ardp.201300044. PubMed DOI
Ahmad S. Kinetic aspects of platinum anticancer agents. Polyhedron. 2017;138:109–124. doi: 10.1016/j.poly.2017.09.016. DOI
Benedetti M., Girelli C.R., Antonucci D., Fanizzi F.P. [PtCl(η1-CH2-CH2OR)(NN). and [PtCl(η2-CH2CH2)(NN).+, NN = dinitrogen ligand, complexes. Sterical and electronic effects evidenced by NMR analysis. J. Organomet. Chem. 2014;771:40–46. doi: 10.1016/j.jorganchem.2014.05.014. DOI
Benedetti M., Antonucci D., Fanizzi F.P., Papadia P., de Castro F. General cooperative effects of single atom ligands on a metal: A 195 Pt NMR chemical shift as a function of coordinated halido ligands’ ionic radii overall sum. Dalton Trans. 2015;44:15377–15381. doi: 10.1039/C5DT02285A. PubMed DOI
Benedetti M., Papadia P., Girelli C.R., De Castro F., Capitelli F., Fanizzi F.P. X-ray structures versus NMR signals in pentacoordinate [PtX2(η2-CH2=CH2)(Me2phen). (X = Cl, Br, I) complexes. Inorganica Chim. Acta. 2015;428:8–13. doi: 10.1016/j.ica.2015.01.003. DOI
Benedetti M., Antonucci D., Girelli C.R., Fanizzi F.P. Hindrance, Donor Ability of Men_NN Chelates and Overall Stability of Pentacoordinate [PtCl2(η2-CH2=CH2) (Men_NN). Complexes as Observed by η2-Olefin 1JPt,C Modulation: An NMR Study. Eur. J. Inorg. Chem. 2015:2308–2316. doi: 10.1002/ejic.201500103. DOI
Paschoal D., Guerra C.F., de Oliveira M.A., Ramalho T.C., Dos Santos H.F. Predicting Pt-195 NMR Chemical Shift Using New Relativistic All-Electron Basis Set. J. Comput. Chem. 2016;37:2360–2373. doi: 10.1002/jcc.24461. PubMed DOI
Still B.M., Kumar P.G.A., Aldrich-Wright J.R., Price W.S. 195Pt NMR—Theory and application. Chem. Soc. Rev. 2007;36:665–686. doi: 10.1039/B606190G. PubMed DOI
Thomsen R., Christensen M.H. MolDock: A New Technique for High-Accuracy Molecular Docking. J. Med. Chem. 2006;49:3315–3321. doi: 10.1021/jm051197e. PubMed DOI
Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI
Hay P.J., Wadt W.R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 1985;82:270–283. doi: 10.1063/1.448799. DOI
Weigend F., Ahlrichs R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence. Phys. Chem. Chem. Phys. 2005;7:3297–3305. doi: 10.1039/b508541a. PubMed DOI
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian 09. Gaussian, Inc.; Wallingford, CT, USA: 2009.
Barone V., Cossi M., Tomasi J. Geometry optimization of molecular structures in solution by the polarizable continuum model. J. Comput. Chem. 1998;19:404–417. doi: 10.1002/(SICI)1096-987X(199803)19:4<404::AID-JCC3>3.0.CO;2-W. DOI
Cancès E., Mennucci B., Tomasi J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997;107:3032–3041. doi: 10.1063/1.474659. DOI
Gonçalves M.A., Santos L.S., Prata D.M., Peixoto F.C., da Cunha E.F.F., Ramalho T.C. Optimal wavelet signal compression as an efficient alternative to investigate molecular dynamics simulations: Application to thermal and solvent effects of MRI probes. Theor. Chem. Acc. 2017;136:15. doi: 10.1007/s00214-016-2037-z. DOI
Iyengar S.S., Frisch M.J. Effect of time-dependent basis functions and their superposition error on atom- centered density matrix propagation (ADMP): Connections to wavelet theory of multiresolution analysis. J. Chem. Phys. 2004;121:5061–5070. doi: 10.1063/1.1780157. PubMed DOI
SciLab v 2.7 1989–2003 INRIA/ENPC. [(accessed on 30 October 2019)]; Available online: www.scilab.org.
Wolinski K., Hinton J.F., Pulay P. Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations. J. Am. Chem. Soc. 1990;112:8251–8260. doi: 10.1021/ja00179a005. DOI
Cheeseman J.R., Trucks G.W., Keith T.A., Frisch M.J. A comparison of models for calculating nuclear magnetic resonance shielding tensors. J. Chem. Phys. 1996;104:5497–5509. doi: 10.1063/1.471789. DOI
Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1997;78:1396. doi: 10.1103/PhysRevLett.78.1396. PubMed DOI
Ramalho T.C., Pereira C.M.P., Martins T.L.C., Figueroa-Villar J.D., Flores A.F.C. Theoretical and experimental 13C and 15N NMR investigation of guanylhydrazones in solution. Magn. Reson. Chem. 2003;41:983–988. doi: 10.1002/mrc.1299. DOI
D’Angelo N.D., Kim T.S., Andrews K., Booker S.K., Caenepeel S., Chen K., Amico D.D., Freeman D., Jiang J., Liu L., et al. Discovery and Optimization of a Series of Benzothiazole Phosphoinositide 3-Kinase (PI3K)/ Mammalian Target of Rapamycin (mTOR) Dual Inhibitors. J. Med. Chem. 2011;54:1789–1811. doi: 10.1021/jm1014605. PubMed DOI
Ramalho T.C., Taft C. Thermal and solvent effects on the NMR and UV parameters of some bioreductive drugs. J. Chem. Phy. 2005;123:54319. doi: 10.1063/1.1996577. PubMed DOI
Guimaraes A.P., França T.C., Oliveira A.A., Da Cunha E.F.F., Ramalho T.C. Design of New Chemotherapeutics Against the Deadly Anthrax Disease. Docking and Molecular Dynamics Studies of Inhibitors Containing Pyrrolidine and Riboamidrazone Rings on Nucleoside Hydrolase from Bacillus anthracis. J. Biomol. Struct. Dyn. 2011;28:455–470. doi: 10.1080/07391102.2011.10508588. PubMed DOI