The relationship of mitochondrial dysfunction and the development of insulin resistance in Cushing's syndrome

. 2019 ; 12 () : 1459-1471. [epub] 20190819

Status PubMed-not-MEDLINE Jazyk angličtina Země Nový Zéland Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31695455

PURPOSE: Cushing's syndrome is characterized by metabolic disturbances including insulin resistance. Mitochondrial dysfunction is one pathogenic factor in the development of insulin resistance in patients with obesity. We explored whether mitochondrial dysfunction correlates with insulin resistance and other metabolic complications. PATIENTS AND METHODS: We investigated the changes of mRNA expression of genes encoding selected subunits of oxidative phosphorylation system (OXPHOS), pyruvate dehydrogenase (PDH) and citrate synthase (CS) in subcutaneous adipose tissue (SCAT) and peripheral monocytes (PM) and mitochondrial enzyme activity in platelets of 24 patients with active Cushing's syndrome and in 9 of them after successful treatment and 22 healthy control subjects. RESULTS: Patients with active Cushing's syndrome had significantly increased body mass index (BMI), homeostasis model assessment of insulin resistance (HOMA-IR) and serum lipids relative to the control group. The expression of all investigated genes for selected mitochondrial proteins was decreased in SCAT in patients with active Cushing's syndrome and remained decreased after successful treatment. The expression of most tested genes in SCAT correlated inversely with BMI and HOMA-IR. The expression of genes encoding selected OXPHOS subunits and CS was increased in PM in patients with active Cushing's syndrome with a tendency to decrease toward normal levels after cure. Patients with active Cushing's syndrome showed increased enzyme activity of complex I (NQR) in platelets. CONCLUSION: Mitochondrial function in SCAT in patients with Cushing's syndrome is impaired and only slightly affected by its treatment which may reflect ongoing metabolic disturbances even after successful treatment of Cushing's syndrome.

Zobrazit více v PubMed

Newell-Price J, Bertagna X, Grossman AB, Nieman LK. Cushing’s syndrome. Lancet. 2006;367:1605–1617. doi:10.1016/S0140-6736(06)68699-6 PubMed DOI

Etxabe J, Vazquez JA. Morbidity and mortality in Cushing’s disease: an epidemiological approach. Clin Endocrinol. 1994;40:479–484. doi:10.1111/j.1365-2265.1994.tb02486.x PubMed DOI

Pivonello R, Faggiano A, Lombardi G, Colao A. The metabolic syndrome and cardiovascular risk in Cushing’s syndrome. Endocrinol Metab Clin North Am. 2005;34(2):327–339. doi:10.1016/j.ecl.2005.01.010 PubMed DOI

Krsek M, Silha JV, Jezkova J, et al. Adipokine levels in Cushing’s syndrome; elevated resistin levels in female patients with Cushing’s syndrome. Clin Endocrinol. 2004;60(3):350–357. doi:10.1111/j.1365-2265.2003.01987.x PubMed DOI

Fleseriu M, Biller BM, Findling JW. for SEISMIC study investigators. Mifepristone, a glucocorticoid receptor antagonist, produces clinical and metabolic benefits in patients with Cushing’s syndrome. J Clin Endocrinol Metab. 2012;97(6):2039–2049. doi:10.1210/jc.2011-3350 PubMed DOI

van Raalte DH, Ouwens DM, Diamant M. Novel insights into glucocorticoid-mediated diabetogenic effects: towards expansion of therapeutic options? Eur J Clin Invest. 2009;39(2):81–93. doi:10.1111/j.1365-2362.2008.02067.x PubMed DOI

Beaudry JL, Riddell MC. Effects of glucocorticoids and exercise on pancreatic β-cell function and diabetes development. Diabetes Metab Res Rev. 2012;28(7):560–573. doi:10.1002/dmrr.2310 PubMed DOI

Valassi E, Crespo I, Santos A, Webb SM. Clinical consequences of Cushing’s syndrome. Pituitary. 2012;15(3):319–329. doi:10.1007/s11102-012-0394-8 PubMed DOI

Cruz-Topete D, Cidlowski JA. One hormone, two actions: anti and pro-inflammatory effects of glucocorticoids. Neuroimmunomodulation. 2015;22(1–2):20–32. doi:10.1159/000362724 PubMed DOI PMC

Wajchenberg BL, Bosco A, Martins Marone M, Levin R, Rocha M, Lerario AC. Estimation of body fat and lean tissue distribution by dual energy X-ray absorbimetry and abdominal body fat evalution by computed tomography in Cushing’s disease. J Clin Endocrinol Metab. 1995;80:2791–2794. doi:10.1210/jcem.80.9.7673425 PubMed DOI

Rockall AG, Sohaib SA, Evans D, et al. Computed tomography assessment of fat distribution in male and female patients with Cushing’s syndrome. Eur J Endocrinol. 2003;149:561–567. PubMed

Leal-Cerro A, Considine RV, Peino R, et al. Serum immunoreactive-leptin levels are increased in patients with Cushing’s syndrome. Horm Metab Res. 1996;28:711–713. doi:10.1055/s-2007-979884 PubMed DOI

Masuzaki H, Ogawa Y, Hosoda K, et al. Glucocorticoid regulation of leptin synthesis and secretion in humans: elevated plasma leptin levels in Cushing’s syndrome. J Clin Endocrinol Metab. 1997;82:2542–2547. doi:10.1210/jcem.82.8.4128 PubMed DOI

Widjaja A, Schurmeyer TH, Von Zur Muhlen A, Brabant G. Determinants of serum leptin levels in Cushing’s syndrome. J Clin Endocrinol Metab. 1998;83:600–603. doi:10.1210/jcem.83.2.4566 PubMed DOI

Aranda G, Lopez C, Fernandez-Ruiz R, et al. Circulatory immune cells in cushing syndrome: bystanders or active contributors to athero metabolic injury? A study of adhesion and activation of cell surface markers. Int J Endocrinol. 2017. doi:10.1155/2017/2912763 PubMed DOI PMC

Hristov M, Weber C. Differential role of monocyte subset in atherosclerosis. Thromb Haemost. 2011;106(5):757–762. doi:10.1160/TH11-07-0500 PubMed DOI

Mosig S, Renner K, Krause S, et al. Different functions of monocytes subset in familiar hypercholesterolemia: potential function of CD 14+, CD16+ monocytes in detoxification of oxidized LDL. Faseb J. 2009;23(3):866–874. doi:10.1096/fj.08-118240 PubMed DOI

Belge K, Dayyani F, Horelt A, et al. The proinflammatory CD 14+, CD16+ DR++ are a major source of TNF. J Immunol. 2002;168(7):3536–3542. doi:10.4049/jimmunol.168.7.3536 PubMed DOI

Liu B, Dhanda A, Hirani S, et al. CD 14++, CD16+ monocytes are enriched by glucocorticoid treatment and are functionally attenuated in driving effector T cell responses. J Immunol. 2015;194(11):5150–5160. doi:10.4049/jimmunol.1402409 PubMed DOI PMC

Barahona MJ, Sucunza N, Resmini E, et al. Persistent body fat mas and inflammatory marker increases after long-term cure of Cushing’s syndrome. J Clin Endocrinol Metab. 2009;94(9):3365–3371. doi:10.1210/jc.2009-0766 PubMed DOI

Ueland T, Kristo C, Godang K, Aukrust P, Bollerslev J. Interleukin −1 receptor antagonist is associated with fat distribution in endogenous Cushing’s syndrome: a longitudinal study. J Clin Endocrinol Metab. 2003;88:1492–1496. doi:10.1210/jc.2002-021030 PubMed DOI

Shah N, Ruiz HH, Zafar U, Post KD, Buettner C, Geer EB. Proinflammatory cytokines remain elevated despite long-term remission in Cushing’s disease: a prospective study. Clin Endocrinol. 2017;86(1):68–74. doi:10.1111/cen.2017.86.issue-1 PubMed DOI

Duchen MR. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med. 2004;25(4):365–451. doi:10.1016/j.mam.2004.03.001 PubMed DOI

Cadenas E, Davies KJA. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 2000;29(3,4):222–230. PubMed

Indo HP, Yen HC, Nakanishi I, et al. A mitochondrial superoxide theory for oxidative stress diseases and aging. J Clin Biochem Nutr. 2015;56(1):1–7. doi:10.3164/jcbn.14-42 PubMed DOI PMC

Ashrafian H, Frenneaux MP, Opie LH. Metabolic mechanism in heart failure. Circulation. 2007;116(4):434–448. doi:10.1161/CIRCULATIONAHA.107.702795 PubMed DOI

Nisoli E, Clementi E, Carruba MO, Moncada S. Defective mitochondrial biogenesis: a hallmark of the high cardiovascular risk in the metabolic syndrome? Circ Res. 2007;100(6):795–806. doi:10.1161/01.RES.0000259591.97107.6c PubMed DOI

Wiederkehr A, Wollheim CB. Minireview: implication of mitochondria in insulin secretion and action. Endocrinology. 2006;147(6):2643–2649. doi:10.1210/en.2006-0057 PubMed DOI

Du J, McEwen B, Mani HK. Glucocorticoid receptors modulate mitochondrial function. Commun Integr Biol. 2009;2(4):350–352. doi:10.4161/cib.2.4.8554 PubMed DOI PMC

Weber K, Brück P, Mikes Z, Küpper JH, Klingenspor M, Wiesner RJ. Glucocorticoid hormone stimulates mitochondrial biogenesis specifically in skeletal muscle. Endocrinology. 2002;143(1):177–184. doi:10.1210/endo.143.1.8600 PubMed DOI

Du J, Wang Y, Hunter R, et al. Dynamic regulation of mitochondrial function by glucocorticoids. Proc Nati Acad Sci U S A. 2009;106(9):3543–3548. doi:10.1073/pnas.0812671106 PubMed DOI PMC

Dolezalova R, Lacinova Z, Dolinkova M, et al. Changes of endocrine function of adipose tissue in anorexia nervosa: comparison of circulating levels versus subcutaneous mRNA expression. Clin Endocrinol. 2007;67(5):674–678. doi:10.1111/j.1365-2265.2007.02944.x PubMed DOI

Urbanová M, Mráz M, Ďurovcová V, et al. The effect of very-low-calorie diet on mitochondrial dysfunction in subcutaneous adipose tissue and peripheral monocyte of obese subjects with type 2 diabetes mellitus. Physiol Res. 2017;66(5):811–822. PubMed

Mraz M, Lacinova Z, Drapalova J, et al. The effect of very-low-calorie diet on mRNA expression of inflammation-related genes in subcutaneous adipose tissue and peripheral monocytes of obese patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2011;96(4):E606–E613. doi:10.1210/jc.2010-1858 PubMed DOI

Romano AD, Greco E, Vendemiale G, Serviddio G. Bioenergetics and mitochondrial dysfunction in aging: recent insights for e therapeutic approach. Curr Pharm Des. 2014;20(18):2978–2992. PubMed

Villarroya J, Giralt M, Villarroyva F. Mitochondrial DNA: an up-and-coming actor in white adipose tissue pathophysiology. Obesity. 2009;17(10):1814–1820. doi:10.1038/oby.2009.152 PubMed DOI

Kusminski CM, Scherer PE. Mitochondrial dysfunction in white adipose tissue. Trends Endocrinol Metab. 2012;23(9):435–443. doi:10.1016/j.tem.2012.06.004 PubMed DOI PMC

Bogacka I, Ukropcova B, Mc Neil M, Gmible J, Smith SR. Structural and functional consequences of mitochondrial biogenesis in human adipocytes in vitro. J Clin Endocrinol Metab. 2005;90(12):6650–6656. doi:10.1210/jc.2005-1024 PubMed DOI

Kaaman M, Sparks LM, van Harmelen V, et al. Strong association between mitochondrial DNA copy number and lipogenesis in human white adipose tissue. Diabetologia. 2007;50:2526–2533. doi:10.1007/s00125-007-0818-6 PubMed DOI

Wilson-Fritch L, Burkart A, Bell G, et al. Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone. Mol Cell Biol. 2003;23(3):1085–1094. doi:10.1128/mcb.23.15.5376-5387.2003 PubMed DOI PMC

De Pauw A, Tejerina S, Raes M, Keijer J, Arnould T. Mitochondrial (dys) function in adipocyte (de) differentiation and systematic metabolic alterations. Am J Path. 2009;175(3):927–939. doi:10.2353/ajpath.2009.090372 PubMed DOI PMC

Demoniacos C, Djordjevic MR, Tsawdaroglou N, Sekeris CE. The mitochondrion as a primary site of action of glucocorticoids: the interaction of the glucocorticoids receptor with mitochondrial DNA sequences showing partial similarity to the nuclear glucocorticoid responsive elements. J Steroid Biochem Mol Biol. 1995;55(1):43–55. PubMed

Scheller K, Seibel P, Sekeris CE. Glucocorticoid and thyroid hormone receptors in mitochondria of animal cells. Int Rev Cytol. 2003;222:1–61. PubMed

Psara A-M, Sekeris CE. Glucocorticoid receptors and other nuclear transcription factors in mitochondria and possible functions. Biochim Biophys Acta. 2009;1787(5):431–436. doi:10.1016/j.bbabio.2008.11.011 PubMed DOI

Mootha VK, Bunkenborg J, Olsen JV, et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell. 2003;115(5):629–640. doi:10.1016/s0092-8674(03)00926-7 PubMed DOI

Johnson DT, Harris RA, French S, et al. Tissue heterogeneity of the mammalian mitochondrial proteome. Am J Physiol Cell Physiol. 2007;292(2):C689–C697. doi:10.1152/ajpcell.00108.2006 PubMed DOI

Colao A, Pivonelo R, Spiezia S, et al. Persistence of increased cardiovascular risk in patients with Cushing’s disease after five years of successful cure. J Clin Endocrinol Metab. 1999;84(8):2664–2672. PubMed

Lu RH, Ji H, Chang ZG, Su SS, Yang GS. Mitochondrial development and the influence of its dysfunction during rat adipocyte differentiation. Mol Biol Rep. 2010;37(5):2173–2182. doi:10.1007/s11033-009-9695-z PubMed DOI

Granata S, Zaza G, Simone S, et al. Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease. BMC Genomics. 2009;10:388. doi:10.1186/1471-2164-10-388 PubMed DOI PMC

Yu E, Calvert PA, Mercer JR, et al. Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans. Circulation. 2013;128(7):702–712. doi:10.1161/CIRCULATIONAHA.113.002271 PubMed DOI

Li P, Wang B, Sun F, et al. Mitochondrial respiratory dysfunction of blood mononuclear cells links with cardiac disturbance in patients with early- stage heart failure. Sci Rep. 2015;5:10229. doi:10.1038/srep10229 PubMed DOI PMC

Trachta P, Dostálová I, Haluzíková D, et al. Laparoscopic sleeve gastrectomy ameliorates mRNA expression of inflammation-related genes in subcutaneous adipose tissue but not in peripheral monocytes of obese patients. Mol Cell Endocrinol. 2014;383(1–2):96–102. doi:10.1016/j.mce.2013.11.013 PubMed DOI

Böhm M, Papezova H, Hansikova H, Wenchich L, Zeman J. Activities of respiratory chain complexes in isolated platelets in females with anorexia nervosa. Int J Eat Disorders. 2007;40(7):659–663. doi:10.1002/eat.20403 PubMed DOI

Solmi M, Veronese N, Favaro A, et al. Inflammatory cytokines and anorexia nervosa – a meta-analysis of cross-sectional and longitudinal studies. Psychoneuroendocrinology. 2015;51:237–252. doi:10.1016/j.psyneuen.2014.09.031 PubMed DOI

Burkhardt C, Kelly JP, Lim YH, Filley CM, Parker WD Jr. Neuroleptic medications inhibit complex I of the electron transport chain. Ann Neurol. 1993;33(5):512–517. doi:10.1002/ana.410330612 PubMed DOI

Guo X, Wu J, Du J, Ran J, Xu J. Platelets of Type 2 diabetic patients are characterized by high ATP content and low mitochondrial membrane potential. Platelets. 2009;20(8):588–593. doi:10.3109/09537100903288422 PubMed DOI

Bosetti F, Brizzi F, Barogi S, et al. Cytochrome c oxidase and mitochondrial F1F0-ATPase (ATP synthase) activities in platelets and brain from patients with Alzheimer’s disease. Neurobiol Aging. 2002;23(3):371–376. doi:10.1016/S0197-4580(01)00314-1 PubMed DOI

Krige D, Carroll MT, Cooper JM, Marsden CD, Schapira AH. Platelet mitochondrial function in Parkinson’s disease. The royal kings and queens parkinson disease research group. Ann Neurol. 1992;32(6):782–788. doi:10.1002/ana.410320612 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...