The relationship of mitochondrial dysfunction and the development of insulin resistance in Cushing's syndrome
Status PubMed-not-MEDLINE Jazyk angličtina Země Nový Zéland Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31695455
PubMed Central
PMC6707348
DOI
10.2147/dmso.s209095
PII: 209095
Knihovny.cz E-zdroje
- Klíčová slova
- Cushing’s syndrome, gene expression, insulin resistance, mitochondrial enzyme activity,
- Publikační typ
- časopisecké články MeSH
PURPOSE: Cushing's syndrome is characterized by metabolic disturbances including insulin resistance. Mitochondrial dysfunction is one pathogenic factor in the development of insulin resistance in patients with obesity. We explored whether mitochondrial dysfunction correlates with insulin resistance and other metabolic complications. PATIENTS AND METHODS: We investigated the changes of mRNA expression of genes encoding selected subunits of oxidative phosphorylation system (OXPHOS), pyruvate dehydrogenase (PDH) and citrate synthase (CS) in subcutaneous adipose tissue (SCAT) and peripheral monocytes (PM) and mitochondrial enzyme activity in platelets of 24 patients with active Cushing's syndrome and in 9 of them after successful treatment and 22 healthy control subjects. RESULTS: Patients with active Cushing's syndrome had significantly increased body mass index (BMI), homeostasis model assessment of insulin resistance (HOMA-IR) and serum lipids relative to the control group. The expression of all investigated genes for selected mitochondrial proteins was decreased in SCAT in patients with active Cushing's syndrome and remained decreased after successful treatment. The expression of most tested genes in SCAT correlated inversely with BMI and HOMA-IR. The expression of genes encoding selected OXPHOS subunits and CS was increased in PM in patients with active Cushing's syndrome with a tendency to decrease toward normal levels after cure. Patients with active Cushing's syndrome showed increased enzyme activity of complex I (NQR) in platelets. CONCLUSION: Mitochondrial function in SCAT in patients with Cushing's syndrome is impaired and only slightly affected by its treatment which may reflect ongoing metabolic disturbances even after successful treatment of Cushing's syndrome.
Zobrazit více v PubMed
Newell-Price J, Bertagna X, Grossman AB, Nieman LK. Cushing’s syndrome. Lancet. 2006;367:1605–1617. doi:10.1016/S0140-6736(06)68699-6 PubMed DOI
Etxabe J, Vazquez JA. Morbidity and mortality in Cushing’s disease: an epidemiological approach. Clin Endocrinol. 1994;40:479–484. doi:10.1111/j.1365-2265.1994.tb02486.x PubMed DOI
Pivonello R, Faggiano A, Lombardi G, Colao A. The metabolic syndrome and cardiovascular risk in Cushing’s syndrome. Endocrinol Metab Clin North Am. 2005;34(2):327–339. doi:10.1016/j.ecl.2005.01.010 PubMed DOI
Krsek M, Silha JV, Jezkova J, et al. Adipokine levels in Cushing’s syndrome; elevated resistin levels in female patients with Cushing’s syndrome. Clin Endocrinol. 2004;60(3):350–357. doi:10.1111/j.1365-2265.2003.01987.x PubMed DOI
Fleseriu M, Biller BM, Findling JW. for SEISMIC study investigators. Mifepristone, a glucocorticoid receptor antagonist, produces clinical and metabolic benefits in patients with Cushing’s syndrome. J Clin Endocrinol Metab. 2012;97(6):2039–2049. doi:10.1210/jc.2011-3350 PubMed DOI
van Raalte DH, Ouwens DM, Diamant M. Novel insights into glucocorticoid-mediated diabetogenic effects: towards expansion of therapeutic options? Eur J Clin Invest. 2009;39(2):81–93. doi:10.1111/j.1365-2362.2008.02067.x PubMed DOI
Beaudry JL, Riddell MC. Effects of glucocorticoids and exercise on pancreatic β-cell function and diabetes development. Diabetes Metab Res Rev. 2012;28(7):560–573. doi:10.1002/dmrr.2310 PubMed DOI
Valassi E, Crespo I, Santos A, Webb SM. Clinical consequences of Cushing’s syndrome. Pituitary. 2012;15(3):319–329. doi:10.1007/s11102-012-0394-8 PubMed DOI
Cruz-Topete D, Cidlowski JA. One hormone, two actions: anti and pro-inflammatory effects of glucocorticoids. Neuroimmunomodulation. 2015;22(1–2):20–32. doi:10.1159/000362724 PubMed DOI PMC
Wajchenberg BL, Bosco A, Martins Marone M, Levin R, Rocha M, Lerario AC. Estimation of body fat and lean tissue distribution by dual energy X-ray absorbimetry and abdominal body fat evalution by computed tomography in Cushing’s disease. J Clin Endocrinol Metab. 1995;80:2791–2794. doi:10.1210/jcem.80.9.7673425 PubMed DOI
Rockall AG, Sohaib SA, Evans D, et al. Computed tomography assessment of fat distribution in male and female patients with Cushing’s syndrome. Eur J Endocrinol. 2003;149:561–567. PubMed
Leal-Cerro A, Considine RV, Peino R, et al. Serum immunoreactive-leptin levels are increased in patients with Cushing’s syndrome. Horm Metab Res. 1996;28:711–713. doi:10.1055/s-2007-979884 PubMed DOI
Masuzaki H, Ogawa Y, Hosoda K, et al. Glucocorticoid regulation of leptin synthesis and secretion in humans: elevated plasma leptin levels in Cushing’s syndrome. J Clin Endocrinol Metab. 1997;82:2542–2547. doi:10.1210/jcem.82.8.4128 PubMed DOI
Widjaja A, Schurmeyer TH, Von Zur Muhlen A, Brabant G. Determinants of serum leptin levels in Cushing’s syndrome. J Clin Endocrinol Metab. 1998;83:600–603. doi:10.1210/jcem.83.2.4566 PubMed DOI
Aranda G, Lopez C, Fernandez-Ruiz R, et al. Circulatory immune cells in cushing syndrome: bystanders or active contributors to athero metabolic injury? A study of adhesion and activation of cell surface markers. Int J Endocrinol. 2017. doi:10.1155/2017/2912763 PubMed DOI PMC
Hristov M, Weber C. Differential role of monocyte subset in atherosclerosis. Thromb Haemost. 2011;106(5):757–762. doi:10.1160/TH11-07-0500 PubMed DOI
Mosig S, Renner K, Krause S, et al. Different functions of monocytes subset in familiar hypercholesterolemia: potential function of CD 14+, CD16+ monocytes in detoxification of oxidized LDL. Faseb J. 2009;23(3):866–874. doi:10.1096/fj.08-118240 PubMed DOI
Belge K, Dayyani F, Horelt A, et al. The proinflammatory CD 14+, CD16+ DR++ are a major source of TNF. J Immunol. 2002;168(7):3536–3542. doi:10.4049/jimmunol.168.7.3536 PubMed DOI
Liu B, Dhanda A, Hirani S, et al. CD 14++, CD16+ monocytes are enriched by glucocorticoid treatment and are functionally attenuated in driving effector T cell responses. J Immunol. 2015;194(11):5150–5160. doi:10.4049/jimmunol.1402409 PubMed DOI PMC
Barahona MJ, Sucunza N, Resmini E, et al. Persistent body fat mas and inflammatory marker increases after long-term cure of Cushing’s syndrome. J Clin Endocrinol Metab. 2009;94(9):3365–3371. doi:10.1210/jc.2009-0766 PubMed DOI
Ueland T, Kristo C, Godang K, Aukrust P, Bollerslev J. Interleukin −1 receptor antagonist is associated with fat distribution in endogenous Cushing’s syndrome: a longitudinal study. J Clin Endocrinol Metab. 2003;88:1492–1496. doi:10.1210/jc.2002-021030 PubMed DOI
Shah N, Ruiz HH, Zafar U, Post KD, Buettner C, Geer EB. Proinflammatory cytokines remain elevated despite long-term remission in Cushing’s disease: a prospective study. Clin Endocrinol. 2017;86(1):68–74. doi:10.1111/cen.2017.86.issue-1 PubMed DOI
Duchen MR. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med. 2004;25(4):365–451. doi:10.1016/j.mam.2004.03.001 PubMed DOI
Cadenas E, Davies KJA. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 2000;29(3,4):222–230. PubMed
Indo HP, Yen HC, Nakanishi I, et al. A mitochondrial superoxide theory for oxidative stress diseases and aging. J Clin Biochem Nutr. 2015;56(1):1–7. doi:10.3164/jcbn.14-42 PubMed DOI PMC
Ashrafian H, Frenneaux MP, Opie LH. Metabolic mechanism in heart failure. Circulation. 2007;116(4):434–448. doi:10.1161/CIRCULATIONAHA.107.702795 PubMed DOI
Nisoli E, Clementi E, Carruba MO, Moncada S. Defective mitochondrial biogenesis: a hallmark of the high cardiovascular risk in the metabolic syndrome? Circ Res. 2007;100(6):795–806. doi:10.1161/01.RES.0000259591.97107.6c PubMed DOI
Wiederkehr A, Wollheim CB. Minireview: implication of mitochondria in insulin secretion and action. Endocrinology. 2006;147(6):2643–2649. doi:10.1210/en.2006-0057 PubMed DOI
Du J, McEwen B, Mani HK. Glucocorticoid receptors modulate mitochondrial function. Commun Integr Biol. 2009;2(4):350–352. doi:10.4161/cib.2.4.8554 PubMed DOI PMC
Weber K, Brück P, Mikes Z, Küpper JH, Klingenspor M, Wiesner RJ. Glucocorticoid hormone stimulates mitochondrial biogenesis specifically in skeletal muscle. Endocrinology. 2002;143(1):177–184. doi:10.1210/endo.143.1.8600 PubMed DOI
Du J, Wang Y, Hunter R, et al. Dynamic regulation of mitochondrial function by glucocorticoids. Proc Nati Acad Sci U S A. 2009;106(9):3543–3548. doi:10.1073/pnas.0812671106 PubMed DOI PMC
Dolezalova R, Lacinova Z, Dolinkova M, et al. Changes of endocrine function of adipose tissue in anorexia nervosa: comparison of circulating levels versus subcutaneous mRNA expression. Clin Endocrinol. 2007;67(5):674–678. doi:10.1111/j.1365-2265.2007.02944.x PubMed DOI
Urbanová M, Mráz M, Ďurovcová V, et al. The effect of very-low-calorie diet on mitochondrial dysfunction in subcutaneous adipose tissue and peripheral monocyte of obese subjects with type 2 diabetes mellitus. Physiol Res. 2017;66(5):811–822. PubMed
Mraz M, Lacinova Z, Drapalova J, et al. The effect of very-low-calorie diet on mRNA expression of inflammation-related genes in subcutaneous adipose tissue and peripheral monocytes of obese patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2011;96(4):E606–E613. doi:10.1210/jc.2010-1858 PubMed DOI
Romano AD, Greco E, Vendemiale G, Serviddio G. Bioenergetics and mitochondrial dysfunction in aging: recent insights for e therapeutic approach. Curr Pharm Des. 2014;20(18):2978–2992. PubMed
Villarroya J, Giralt M, Villarroyva F. Mitochondrial DNA: an up-and-coming actor in white adipose tissue pathophysiology. Obesity. 2009;17(10):1814–1820. doi:10.1038/oby.2009.152 PubMed DOI
Kusminski CM, Scherer PE. Mitochondrial dysfunction in white adipose tissue. Trends Endocrinol Metab. 2012;23(9):435–443. doi:10.1016/j.tem.2012.06.004 PubMed DOI PMC
Bogacka I, Ukropcova B, Mc Neil M, Gmible J, Smith SR. Structural and functional consequences of mitochondrial biogenesis in human adipocytes in vitro. J Clin Endocrinol Metab. 2005;90(12):6650–6656. doi:10.1210/jc.2005-1024 PubMed DOI
Kaaman M, Sparks LM, van Harmelen V, et al. Strong association between mitochondrial DNA copy number and lipogenesis in human white adipose tissue. Diabetologia. 2007;50:2526–2533. doi:10.1007/s00125-007-0818-6 PubMed DOI
Wilson-Fritch L, Burkart A, Bell G, et al. Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone. Mol Cell Biol. 2003;23(3):1085–1094. doi:10.1128/mcb.23.15.5376-5387.2003 PubMed DOI PMC
De Pauw A, Tejerina S, Raes M, Keijer J, Arnould T. Mitochondrial (dys) function in adipocyte (de) differentiation and systematic metabolic alterations. Am J Path. 2009;175(3):927–939. doi:10.2353/ajpath.2009.090372 PubMed DOI PMC
Demoniacos C, Djordjevic MR, Tsawdaroglou N, Sekeris CE. The mitochondrion as a primary site of action of glucocorticoids: the interaction of the glucocorticoids receptor with mitochondrial DNA sequences showing partial similarity to the nuclear glucocorticoid responsive elements. J Steroid Biochem Mol Biol. 1995;55(1):43–55. PubMed
Scheller K, Seibel P, Sekeris CE. Glucocorticoid and thyroid hormone receptors in mitochondria of animal cells. Int Rev Cytol. 2003;222:1–61. PubMed
Psara A-M, Sekeris CE. Glucocorticoid receptors and other nuclear transcription factors in mitochondria and possible functions. Biochim Biophys Acta. 2009;1787(5):431–436. doi:10.1016/j.bbabio.2008.11.011 PubMed DOI
Mootha VK, Bunkenborg J, Olsen JV, et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell. 2003;115(5):629–640. doi:10.1016/s0092-8674(03)00926-7 PubMed DOI
Johnson DT, Harris RA, French S, et al. Tissue heterogeneity of the mammalian mitochondrial proteome. Am J Physiol Cell Physiol. 2007;292(2):C689–C697. doi:10.1152/ajpcell.00108.2006 PubMed DOI
Colao A, Pivonelo R, Spiezia S, et al. Persistence of increased cardiovascular risk in patients with Cushing’s disease after five years of successful cure. J Clin Endocrinol Metab. 1999;84(8):2664–2672. PubMed
Lu RH, Ji H, Chang ZG, Su SS, Yang GS. Mitochondrial development and the influence of its dysfunction during rat adipocyte differentiation. Mol Biol Rep. 2010;37(5):2173–2182. doi:10.1007/s11033-009-9695-z PubMed DOI
Granata S, Zaza G, Simone S, et al. Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease. BMC Genomics. 2009;10:388. doi:10.1186/1471-2164-10-388 PubMed DOI PMC
Yu E, Calvert PA, Mercer JR, et al. Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans. Circulation. 2013;128(7):702–712. doi:10.1161/CIRCULATIONAHA.113.002271 PubMed DOI
Li P, Wang B, Sun F, et al. Mitochondrial respiratory dysfunction of blood mononuclear cells links with cardiac disturbance in patients with early- stage heart failure. Sci Rep. 2015;5:10229. doi:10.1038/srep10229 PubMed DOI PMC
Trachta P, Dostálová I, Haluzíková D, et al. Laparoscopic sleeve gastrectomy ameliorates mRNA expression of inflammation-related genes in subcutaneous adipose tissue but not in peripheral monocytes of obese patients. Mol Cell Endocrinol. 2014;383(1–2):96–102. doi:10.1016/j.mce.2013.11.013 PubMed DOI
Böhm M, Papezova H, Hansikova H, Wenchich L, Zeman J. Activities of respiratory chain complexes in isolated platelets in females with anorexia nervosa. Int J Eat Disorders. 2007;40(7):659–663. doi:10.1002/eat.20403 PubMed DOI
Solmi M, Veronese N, Favaro A, et al. Inflammatory cytokines and anorexia nervosa – a meta-analysis of cross-sectional and longitudinal studies. Psychoneuroendocrinology. 2015;51:237–252. doi:10.1016/j.psyneuen.2014.09.031 PubMed DOI
Burkhardt C, Kelly JP, Lim YH, Filley CM, Parker WD Jr. Neuroleptic medications inhibit complex I of the electron transport chain. Ann Neurol. 1993;33(5):512–517. doi:10.1002/ana.410330612 PubMed DOI
Guo X, Wu J, Du J, Ran J, Xu J. Platelets of Type 2 diabetic patients are characterized by high ATP content and low mitochondrial membrane potential. Platelets. 2009;20(8):588–593. doi:10.3109/09537100903288422 PubMed DOI
Bosetti F, Brizzi F, Barogi S, et al. Cytochrome c oxidase and mitochondrial F1F0-ATPase (ATP synthase) activities in platelets and brain from patients with Alzheimer’s disease. Neurobiol Aging. 2002;23(3):371–376. doi:10.1016/S0197-4580(01)00314-1 PubMed DOI
Krige D, Carroll MT, Cooper JM, Marsden CD, Schapira AH. Platelet mitochondrial function in Parkinson’s disease. The royal kings and queens parkinson disease research group. Ann Neurol. 1992;32(6):782–788. doi:10.1002/ana.410320612 PubMed DOI