• This record comes from PubMed

Zebrafish Models of Cancer-New Insights on Modeling Human Cancer in a Non-Mammalian Vertebrate

. 2019 Nov 15 ; 10 (11) : . [epub] 20191115

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't, Review

Zebrafish (Danio rerio) is a valuable non-mammalian vertebrate model widely used to study development and disease, including more recently cancer. The evolutionary conservation of cancer-related programs between human and zebrafish is striking and allows extrapolation of research outcomes obtained in fish back to humans. Zebrafish has gained attention as a robust model for cancer research mainly because of its high fecundity, cost-effective maintenance, dynamic visualization of tumor growth in vivo, and the possibility of chemical screening in large numbers of animals at reasonable costs. Novel approaches in modeling tumor growth, such as using transgene electroporation in adult zebrafish, could improve our knowledge about the spatial and temporal control of cancer formation and progression in vivo. Looking at genetic as well as epigenetic alterations could be important to explain the pathogenesis of a disease as complex as cancer. In this review, we highlight classic genetic and transplantation models of cancer in zebrafish as well as provide new insights on advances in cancer modeling. Recent progress in zebrafish xenotransplantation studies and drug screening has shown that zebrafish is a reliable model to study human cancer and could be suitable for evaluating patient-derived xenograft cell invasiveness. Rapid, large-scale evaluation of in vivo drug responses and kinetics in zebrafish could undoubtedly lead to new applications in personalized medicine and combination therapy. For all of the above-mentioned reasons, zebrafish is approaching a future of being a pre-clinical cancer model, alongside the mouse. However, the mouse will continue to be valuable in the last steps of pre-clinical drug screening, mostly because of the highly conserved mammalian genome and biological processes.

See more in PubMed

Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI

Mroz E.A., Rocco J.W. The challenges of tumor genetic diversity. Cancer. 2017;123:917–927. doi: 10.1002/cncr.30430. PubMed DOI PMC

Grzywa T.M., Paskal W., Wlodarski P.K. Intratumor and Intertumor Heterogeneity in Melanoma. Transl. Oncol. 2017;10:956–975. doi: 10.1016/j.tranon.2017.09.007. PubMed DOI PMC

Cagan R.L., Zon L.I., White R.M. Modeling Cancer with Flies and Fish. Dev. Cell. 2019;49:317–324. doi: 10.1016/j.devcel.2019.04.013. PubMed DOI PMC

McCune J.M., Namikawa R., Kaneshima H., Shultz L.D., Lieberman M., Weissman I.L. The SCID-hu mouse: Murine model for the analysis of human hematolymphoid differentiation and function. Science. 1988;241:1632–1639. doi: 10.1126/science.2971269. PubMed DOI

Bock B.C., Stein U., Schmitt C.A., Augustin H.G. Mouse models of human cancer. Cancer Res. 2014;74:4671–4675. doi: 10.1158/0008-5472.CAN-14-1424. PubMed DOI

Capasso A., Lang J., Pitts T.M., Jordan K.R., Lieu C.H., Davis S.L., Diamond J.R., Kopetz S., Barbee J., Peterson J., et al. Characterization of immune responses to anti-PD-1 mono and combination immunotherapy in hematopoietic humanized mice implanted with tumor xenografts. J. Immunother. Cancer. 2019;7:37. doi: 10.1186/s40425-019-0518-z. PubMed DOI PMC

van der Weyden L., Patton E.E., Wood G.A., Foote A.K., Brenn T., Arends M.J., Adams D.J. Cross-species models of human melanoma. J. Pathol. 2016;238:152–165. doi: 10.1002/path.4632. PubMed DOI PMC

Kucinska M., Murias M., Nowak-Sliwinska P. Beyond mouse cancer models: Three-dimensional human-relevant in vitro and non-mammalian in vivo models for photodynamic therapy. Mutat. Res. 2017;773:242–262. doi: 10.1016/j.mrrev.2016.09.002. PubMed DOI

Sarasamma S., Lai Y.H., Liang S.T., Liu K., Hsiao C.D. The Power of Fish Models to Elucidate Skin Cancer Pathogenesis and Impact the Discovery of New Therapeutic Opportunities. Int. J. Mol. Sci. 2018;19:3929. doi: 10.3390/ijms19123929. PubMed DOI PMC

Schartl M., Walter R.B. Xiphophorus and Medaka Cancer Models. Adv. Exp. Med. Biol. 2016;916:531–552. PubMed

Hyodo-Taguchi Y., Matsudaira H. Induction of transplantable melanoma by treatment with N-methyl-N’-nitro-N-nitrosoguanidine in an inbred strain of the teleost Oryzias latipes. J. Natl. Cancer Inst. 1984;73:1219–1227. PubMed

Kimmel C.B., Ballard W.W., Kimmel S.R., Ullmann B., Schilling T.F. Stages of embryonic development of the zebrafish. Dev. Dyn. 1995;203:253–310. doi: 10.1002/aja.1002030302. PubMed DOI

Haffter P., Granato M., Brand M., Mullins M.C., Hammerschmidt M., Kane D.A., Odenthal J., van Eeden F.J., Jiang Y.J., Heisenberg C.P., et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development. 1996;123:1–36. PubMed

White R., Rose K., Zon L. Zebrafish cancer: The state of the art and the path forward. Nat. Rev. Cancer. 2013;13:624–636. doi: 10.1038/nrc3589. PubMed DOI PMC

White R.M., Sessa A., Burke C., Bowman T., LeBlanc J., Ceol C., Bourque C., Dovey M., Goessling W., Burns C.E., et al. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell. 2008;2:183–189. doi: 10.1016/j.stem.2007.11.002. PubMed DOI PMC

Payne E., Look T. Zebrafish modelling of leukaemias. Br. J. Haematol. 2009;146:247–256. doi: 10.1111/j.1365-2141.2009.07705.x. PubMed DOI

Veinotte C.J., Dellaire G., Berman J.N. Hooking the big one: The potential of zebrafish xenotransplantation to reform cancer drug screening in the genomic era. Dis. Models Mech. 2014;7:745–754. doi: 10.1242/dmm.015784. PubMed DOI PMC

Kirchberger S., Sturtzel C., Pascoal S., Distel M. Quo natas, Danio?-Recent Progress in Modeling Cancer in Zebrafish. Front. Oncol. 2017;7:186. doi: 10.3389/fonc.2017.00186. PubMed DOI PMC

Mathias J.R., Dodd M.E., Walters K.B., Yoo S.K., Ranheim E.A., Huttenlocher A. Characterization of zebrafish larval inflammatory macrophages. Dev. Comp. Immunol. 2009;33:1212–1217. doi: 10.1016/j.dci.2009.07.003. PubMed DOI PMC

Ellett F., Pase L., Hayman J.W., Andrianopoulos A., Lieschke G.J. mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood. 2011;117:E49–E56. doi: 10.1182/blood-2010-10-314120. PubMed DOI PMC

He S., Lamers G.E., Beenakker J.W., Cui C., Ghotra V.P., Danen E.H., Meijer A.H., Spaink H.P., Snaar-Jagalska B.E. Neutrophil-mediated experimental metastasis is enhanced by VEGFR inhibition in a zebrafish xenograft model. J. Pathol. 2012;227:431–445. doi: 10.1002/path.4013. PubMed DOI PMC

Howe K., Clark M.D., Torroja C.F., Torrance J., Berthelot C., Muffato M., Collins J.E., Humphray S., McLaren K., Matthews L., et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496:498–503. doi: 10.1038/nature12111. PubMed DOI PMC

Taylor A.M., Zon L.I. Zebrafish tumor assays: The state of transplantation. Zebrafish. 2009;6:339–346. doi: 10.1089/zeb.2009.0607. PubMed DOI PMC

Eguiara A., Holgado O., Beloqui I., Abalde L., Sanchez Y., Callol C., Martin A.G. Xenografts in zebrafish embryos as a rapid functional assay for breast cancer stem-like cell identification. Cell Cycle. 2011;10:3751–3757. doi: 10.4161/cc.10.21.17921. PubMed DOI

Brown H.K., Schiavone K., Tazzyman S., Heymann D., Chico T.J. Zebrafish xenograft models of cancer and metastasis for drug discovery. Expert Opin. Drug Discov. 2017;12:379–389. doi: 10.1080/17460441.2017.1297416. PubMed DOI

Fior R., Póvoa V., Mendes R.V., Carvalho T., Gomes A., Figueiredo N., Ferreira M.G. Single-cell functional and chemosensitive profiling of combinatorial colorectal therapy in zebrafish xenografts. Proc. Natl. Acad. Sci. USA. 2017;114:E8234–E8243. doi: 10.1073/pnas.1618389114. PubMed DOI PMC

Letrado P., de Miguel I., Lamberto I., Diez-Martinez R., Oyarzabal J. Zebrafish: Speeding Up the Cancer Drug Discovery Process. Cancer Res. 2018;78:6048–6058. doi: 10.1158/0008-5472.CAN-18-1029. PubMed DOI

Spence R., Gerlach G., Lawrence C., Smith C. The behaviour and ecology of the zebrafish, Danio rerio. Biol. Rev. 2008;83:13–34. doi: 10.1111/j.1469-185X.2007.00030.x. PubMed DOI

Force A., Lynch M., Pickett F.B., Amores A., Yan Y.L., Postlethwait J. Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 1999;151:1531–1545. PubMed PMC

Taylor J.S., Braasch I., Frickey T., Meyer A., Van de Peer Y. Genome duplication, a trait shared by 22,000 species of ray-finned fish. Genome Res. 2003;13:382–390. doi: 10.1101/gr.640303. PubMed DOI PMC

Callahan S.J., Tepan S., Zhang Y.M., Lindsay H., Burger A., Campbell N.R., Kim I.S., Hollmann T.J., Studer L., Mosimann C., et al. Cancer modeling by Transgene Electroporation in Adult Zebrafish (TEAZ) Dis. Models Mech. 2018;11:dmm034561. doi: 10.1242/dmm.034561. PubMed DOI PMC

Stuelten C.H., Parent C.A., Montell D.J. Cell motility in cancer invasion and metastasis: Insights from simple model organisms. Nat. Rev. Cancer. 2018;18:296–312. doi: 10.1038/nrc.2018.15. PubMed DOI PMC

Dawson M.A., Kouzarides T. Cancer Epigenetics: From Mechanism to Therapy. Cell. 2012;150:12–27. doi: 10.1016/j.cell.2012.06.013. PubMed DOI

Chernyavskaya Y., Kent B., Sadler K.C. Zebrafish Discoveries in Cancer Epigenetics. Adv. Exp. Med. Biol. 2016;916:169–197. PubMed PMC

Schultz L.E., Haltom J.A., Almeida M.P., Wierson W.A., Solin S.L., Weiss T.J., Helmer J.A., Sandquist E.J., Shive H.R., McGrail M. Epigenetic regulators Rbbp4 and Hdac1 are overexpressed in a zebrafish model of RB1 embryonal brain tumor, and are required for neural progenitor survival and proliferation. Dis. Models Mech. 2018;11:dmm034124. doi: 10.1242/dmm.034124. PubMed DOI PMC

Beckwith L.G., Moore J.L., Tsao-Wu G.S., Harshbarger J.C., Cheng K.C. Ethylnitrosourea induces neoplasia in zebrafish (Danio rerio) Labor. Investig. 2000;80:379–385. doi: 10.1038/labinvest.3780042. PubMed DOI

Spitsbergen J.M., Tsai H.W., Reddy A., Miller T., Arbogast D., Hendricks J.D., Bailey G.S. Neoplasia in zebrafish (Danio rerio) treated with N-methyl-N’-nitro-N-nitrosoguanidine by three exposure routes at different developmental stages. Toxicol. Pathol. 2000;28:716–725. doi: 10.1177/019262330002800512. PubMed DOI

Berghmans S., Murphey R.D., Wienholds E., Neuberg D., Kutok J.L., Fletcher C.D., Morris J.P., Liu T.X., Schulte-Merker S., Kanki J.P., et al. tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc. Natl. Acad. Sci. USA. 2005;102:407–412. doi: 10.1073/pnas.0406252102. PubMed DOI PMC

Ignatius M.S., Hayes M.N., Moore F.E., Tang Q., Garcia S.P., Blackburn P.R., Baxi K., Wang L., Jin A., Ramakrishnan A., et al. tp53 deficiency causes a wide tumor spectrum and increases embryonal rhabdomyosarcoma metastasis in zebrafish. Elife. 2018;7:e37202. doi: 10.7554/eLife.37202. PubMed DOI PMC

Koster R., Sassen W.A. A molecular toolbox for genetic manipulation of zebrafish. Adv. Genom. Genet. 2015;5:151. doi: 10.2147/AGG.S57585. DOI

Langenau D.M., Traver D., Ferrando A.A., Kutok J.L., Aster J.C., Kanki J.P., Lin S., Prochownik E., Trede N.S., Zon L.I., et al. Myc-induced T cell leukemia in transgenic zebrafish. Science. 2003;299:887–890. doi: 10.1126/science.1080280. PubMed DOI

Langenau D.M., Keefe M.D., Storer N.Y., Jette C.A., Smith A.C., Ceol C.J., Bourque C., Look A.T., Zon L.I. Co-injection strategies to modify radiation sensitivity and tumor initiation in transgenic Zebrafish. Oncogene. 2008;27:4242–4248. doi: 10.1038/onc.2008.56. PubMed DOI PMC

Langenau D.M., Keefe M.D., Storer N.Y., Guyon J.R., Kutok J.L., Le X., Goessling W., Neuberg D.S., Kunkel L.M., Zon L.I. Effects of RAS on the genesis of embryonal rhabdomyosarcoma. Genes Dev. 2007;21:1382–1395. doi: 10.1101/gad.1545007. PubMed DOI PMC

Patton E.E., Widlund H.R., Kutok J.L., Kopani K.R., Amatruda J.F., Murphey R.D., Berghmans S., Mayhall E.A., Traver D., Fletcher C.D., et al. BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr. Biol. 2005;15:249–254. doi: 10.1016/j.cub.2005.01.031. PubMed DOI

Patton E.E., Zon L.I. Taking human cancer genes to the fish: A transgenic model of melanoma in zebrafish. Zebrafish. 2005;1:363–368. doi: 10.1089/zeb.2005.1.363. PubMed DOI

Mensah L., Ferguson J.L., Shive H.R. Genotypic and Phenotypic Variables Affect Meiotic Cell Cycle Progression, Tumor Ploidy, and Cancer-Associated Mortality in a brca2-Mutant Zebrafish Model. J. Oncol. 2019;2019:9218251. doi: 10.1155/2019/9218251. PubMed DOI PMC

Shive H.R., West R.R., Embree L.J., Azuma M., Sood R., Liu P., Hickstein D.D. brca2 in zebrafish ovarian development, spermatogenesis, and tumorigenesis. Proc. Natl. Acad. Sci. USA. 2010;107:19350–19355. doi: 10.1073/pnas.1011630107. PubMed DOI PMC

Mort R.L., Jackson I.J., Patton E.E. The melanocyte lineage in development and disease. Development. 2015;142:1387. doi: 10.1242/dev.123729. PubMed DOI PMC

Kaufman C.K., Mosimann C., Fan Z.P., Yang S., Thomas A.J., Ablain J., Tan J.L., Fogley R.D., van Rooijen E., Hagedorn E.J., et al. A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation. Science. 2016;351:aad2197. doi: 10.1126/science.aad2197. PubMed DOI PMC

Santoriello C., Deflorian G., Pezzimenti F., Kawakami K., Lanfrancone L., d’Adda di Fagagna F., Mione M. Expression of H-RASV12 in a zebrafish model of Costello syndrome causes cellular senescence in adult proliferating cells. Dis. Models Mech. 2009;2:56–67. doi: 10.1242/dmm.001016. PubMed DOI PMC

Santoriello C., Gennaro E., Anelli V., Distel M., Kelly A., Köster R.W., Hurlstone A., Mione M. Kita Driven Expression of Oncogenic HRAS Leads to Early Onset and Highly Penetrant Melanoma in Zebrafish. PLoS ONE. 2010;5:e15170. doi: 10.1371/journal.pone.0015170. PubMed DOI PMC

Anelli V., Villefranc J.A., Chhangawala S., Martinez-McFaline R., Riva E., Nguyen A., Verma A., Bareja R., Chen Z., Scognamiglio T., et al. Oncogenic BRAF disrupts thyroid morphogenesis and function via twist expression. Elife. 2017;6:e20728. doi: 10.7554/eLife.20728. PubMed DOI PMC

Lister J.A., Capper A., Zeng Z., Mathers M.E., Richardson J., Paranthaman K., Jackson I.J., Patton E.E. A conditional zebrafish MITF mutation reveals MITF levels are critical for melanoma promotion vs. regression in vivo. J. Investig. Dermatol. 2014;134:133–140. doi: 10.1038/jid.2013.293. PubMed DOI PMC

Anelli V., Ordas A., Kneitz S., Sagredo L.M., Gourain V., Schartl M., Meijer A.H., Mione M. Ras-Induced miR-146a and 193a Target Jmjd6 to Regulate Melanoma Progression. Front. Genet. 2018;9:675. doi: 10.3389/fgene.2018.00675. PubMed DOI PMC

Park S.W., Davison J.M., Rhee J., Hruban R.H., Maitra A., Leach S.D. Oncogenic KRAS Induces Progenitor Cell Expansion and Malignant Transformation in Zebrafish Exocrine Pancreas. Gastroenterology. 2008;134:2080–2090. doi: 10.1053/j.gastro.2008.02.084. PubMed DOI PMC

Park J.T., Leach S.D. Zebrafish model of KRAS-initiated pancreatic cancer. Anim. Cells Syst. 2018;22:353–359. doi: 10.1080/19768354.2018.1530301. PubMed DOI PMC

Chou Y.T., Chen L.Y., Tsai S.L., Tu H.C., Lu J.W., Ciou S.C., Wang H.D., Yuh C.H. Ribose-5-Phosphate Isomerase a Overexpression Promotes Liver Cancer Development in Transgenic Zebrafish via Activation of ERK and beta-catenin Pathways. Carcinogenesis. 2018;40:461–473. doi: 10.1093/carcin/bgy155. PubMed DOI PMC

Lu J.W., Raghuram D., Fong P.A., Gong Z. Inducible Intestine-Specific Expression of kras(V12) Triggers Intestinal Tumorigenesis in Transgenic Zebrafish. Neoplasia. 2018;20:1187–1197. doi: 10.1016/j.neo.2018.10.002. PubMed DOI PMC

Yang Q., Yan C., Wang X., Gong Z. Leptin induces muscle wasting in a zebrafish kras-driven hepatocellular carcinoma (HCC) model. Dis. Models Mech. 2019;12:dmm038240. doi: 10.1242/dmm.038240. PubMed DOI PMC

Li H., Lu J.W., Huo X., Li Y., Li Z., Gong Z. Effects of sex hormones on liver tumor progression and regression in Myc/xmrk double oncogene transgenic zebrafish. Gen. Comp. Endocrinol. 2019;277:112–121. doi: 10.1016/j.ygcen.2019.03.018. PubMed DOI

Enya S., Kawakami K., Suzuki Y., Kawaoka S. A novel zebrafish intestinal tumor model reveals a role for cyp7a1-dependent tumor-liver crosstalk in causing adverse effects on the host. Dis. Models Mech. 2018;11:dmm032383. doi: 10.1242/dmm.032383. PubMed DOI PMC

Ceol C.J., Houvras Y., White R.M., Zon L.I. Melanoma biology and the promise of zebrafish. Zebrafish. 2008;5:247–255. doi: 10.1089/zeb.2008.0544. PubMed DOI PMC

Davies H., Bignell G.R., Cox C., Stephens P., Edkins S., Clegg S., Teague J., Woffendin H., Garnett M.J., Bottomley W., et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–954. doi: 10.1038/nature00766. PubMed DOI

He S., Jing C.B., Look A.T. Zebrafish models of leukemia. Methods Cell Biol. 2017;138:563–592. PubMed

Langenau D.M., Feng H., Berghmans S., Kanki J.P., Kutok J.L., Look A.T. Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. USA. 2005;102:6068–6073. doi: 10.1073/pnas.0408708102. PubMed DOI PMC

Potts K.S., Bowman T.V. Modeling Myeloid Malignancies Using Zebrafish. Front. Oncol. 2017;7:297. doi: 10.3389/fonc.2017.00297. PubMed DOI PMC

Yeh J.R., Munson K.M., Chao Y.L., Peterson Q.P., Macrae C.A., Peterson R.T. AML1-ETO reprograms hematopoietic cell fate by downregulating scl expression. Development. 2008;135:401–410. doi: 10.1242/dev.008904. PubMed DOI

Dayyani F., Wang J., Yeh J.R., Ahn E.Y., Tobey E., Zhang D.E., Bernstein I.D., Peterson R.T., Sweetser D.A. Loss of TLE1 and TLE4 from the del(9q) commonly deleted region in AML cooperates with AML1-ETO to affect myeloid cell proliferation and survival. Blood. 2008;111:4338–4347. doi: 10.1182/blood-2007-07-103291. PubMed DOI PMC

Zhuravleva J., Paggetti J., Martin L., Hammann A., Solary E., Bastie J.N., Delva L. MOZ/TIF2-induced acute myeloid leukaemia in transgenic fish. Br. J. Haematol. 2008;143:378–382. doi: 10.1111/j.1365-2141.2008.07362.x. PubMed DOI

Onnebo S.M., Condron M.M., McPhee D.O., Lieschke G.J., Ward A.C. Hematopoietic perturbation in zebrafish expressing a tel-jak2a fusion. Exp. Hematol. 2005;33:182–188. doi: 10.1016/j.exphem.2004.10.019. PubMed DOI

Onnebo S.M., Rasighaemi P., Kumar J., Liongue C., Ward A.C. Alternative TEL-JAK2 fusions associated with T-cell acute lymphoblastic leukemia and atypical chronic myelogenous leukemia dissected in zebrafish. Haematologica. 2012;97:1895–1903. doi: 10.3324/haematol.2012.064659. PubMed DOI PMC

Chen Y., Pan Y., Guo Y., Zhao W., Ho W.T., Wang J., Xu M., Yang F.C., Zhao Z.J. Tyrosine kinase inhibitors targeting FLT3 in the treatment of acute myeloid leukemia. Stem Cell Investig. 2017;4:48. doi: 10.21037/sci.2017.05.04. PubMed DOI PMC

He B.L., Shi X., Man C.H., Ma A.C., Ekker S.C., Chow H.C., So C.W., Choi W.W., Zhang W., Zhang Y., et al. Functions of flt3 in zebrafish hematopoiesis and its relevance to human acute myeloid leukemia. Blood. 2014;123:2518–2529. doi: 10.1182/blood-2013-02-486688. PubMed DOI PMC

Gjini E., Mansour M.R., Sander J.D., Moritz N., Nguyen A.T., Kesarsing M., Gans E., He S., Chen S., Ko M., et al. A zebrafish model of myelodysplastic syndrome produced through tet2 genomic editing. Mol. Cell. Biol. 2015;35:789–804. doi: 10.1128/MCB.00971-14. PubMed DOI PMC

Idilli A.I., Precazzini F., Mione M.C., Anelli V. Zebrafish in Translational Cancer Research: Insight into Leukemia, Melanoma, Glioma and Endocrine Tumor Biology. Genes. 2017;8:236. doi: 10.3390/genes8090236. PubMed DOI PMC

Lu J.W., Hsieh M.S., Liao H.A., Yang Y.J., Ho Y.J., Lin L.I. Zebrafish as a Model for the Study of Human Myeloid Malignancies. BioMed Res. Int. 2015;2015:641475. doi: 10.1155/2015/641475. PubMed DOI PMC

Rasighaemi P., Basheer F., Liongue C., Ward A.C. Zebrafish as a model for leukemia and other hematopoietic disorders. J. Hematol. Oncol. 2015;8:29. doi: 10.1186/s13045-015-0126-4. PubMed DOI PMC

Baeten J.T., de Jong J.L.O. Genetic Models of Leukemia in Zebrafish. Front. Cell Dev. Biol. 2018;6:115. doi: 10.3389/fcell.2018.00115. PubMed DOI PMC

Albacker C.E., Storer N.Y., Langdon E.M., Dibiase A., Zhou Y., Langenau D.M., Zon L.I. The histone methyltransferase SUV39H1 suppresses embryonal rhabdomyosarcoma formation in zebrafish. PLoS ONE. 2013;8:e64969. doi: 10.1371/journal.pone.0064969. PubMed DOI PMC

Ceol C.J., Houvras Y., Jane-Valbuena J., Bilodeau S., Orlando D.A., Battisti V., Fritsch L., Lin W.M., Hollmann T.J., Ferre F., et al. The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature. 2011;471:513–517. doi: 10.1038/nature09806. PubMed DOI PMC

Deveau A.P., Forrester A.M., Coombs A.J., Wagner G.S., Grabher C., Chute I.C., Leger D., Mingay M., Alexe G., Rajan V., et al. Epigenetic therapy restores normal hematopoiesis in a zebrafish model of NUP98-HOXA9-induced myeloid disease. Leukemia. 2015;29:2086–2097. doi: 10.1038/leu.2015.126. PubMed DOI

Nasevicius A., Ekker S.C. Effective targeted gene ’knockdown’ in zebrafish. Nat. Genet. 2000;26:216–220. doi: 10.1038/79951. PubMed DOI

Doyon Y., McCammon J.M., Miller J.C., Faraji F., Ngo C., Katibah G.E., Amora R., Hocking T.D., Zhang L., Rebar E.J., et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat. Biotechnol. 2008;26:702–708. doi: 10.1038/nbt1409. PubMed DOI PMC

Huang P., Xiao A., Zhou M., Zhu Z., Lin S., Zhang B. Heritable gene targeting in zebrafish using customized TALENs. Nat. Biotechnol. 2011;29:699–700. doi: 10.1038/nbt.1939. PubMed DOI

Ablain J., Durand E.M., Yang S., Zhou Y., Zon L.I. A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. Dev. Cell. 2015;32:756–764. doi: 10.1016/j.devcel.2015.01.032. PubMed DOI PMC

Amatruda J.F., Shepard J.L., Stern H.M., Zon L.I. Zebrafish as a cancer model system. Cancer Cell. 2002;1:229–231. doi: 10.1016/S1535-6108(02)00052-1. PubMed DOI

Kok F.O., Shin M., Ni C.W., Gupta A., Grosse A.S., van Impel A., Kirchmaier B.C., Peterson-Maduro J., Kourkoulis G., Male I., et al. Reverse Genetic Screening Reveals Poor Correlation between Morpholino-Induced and Mutant Phenotypes in Zebrafish. Dev. Cell. 2015;32:97–108. doi: 10.1016/j.devcel.2014.11.018. PubMed DOI PMC

Stainier D.Y., Kontarakis Z., Rossi A. Making sense of anti-sense data. Dev. Cell. 2015;32:7–8. doi: 10.1016/j.devcel.2014.12.012. PubMed DOI

Eve A.M., Place E.S., Smith J.C. Comparison of Zebrafish tmem88a mutant and morpholino knockdown phenotypes. PLoS ONE. 2017;12:e0172227. doi: 10.1371/journal.pone.0172227. PubMed DOI PMC

Rossi A., Kontarakis Z., Gerri C., Nolte H., Holper S., Kruger M., Stainier D.Y. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature. 2015;524:230–233. doi: 10.1038/nature14580. PubMed DOI

Bolli N., Payne E.M., Grabher C., Lee J.S., Johnston A.B., Falini B., Kanki J.P., Look A.T. Expression of the cytoplasmic NPM1 mutant (NPMc+) causes the expansion of hematopoietic cells in zebrafish. Blood. 2010;115:3329–3340. doi: 10.1182/blood-2009-02-207225. PubMed DOI PMC

Auer T.O., Del Bene F. CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish. Methods. 2014;69:142–150. doi: 10.1016/j.ymeth.2014.03.027. PubMed DOI

Shin J., Padmanabhan A., de Groh E.D., Lee J.S., Haidar S., Dahlberg S., Guo F., He S., Wolman M.A., Granato M., et al. Zebrafish neurofibromatosis type 1 genes have redundant functions in tumorigenesis and embryonic development. Dis. Models Mech. 2012;5:881–894. doi: 10.1242/dmm.009779. PubMed DOI PMC

Bedell V.M., Wang Y., Campbell J.M., Poshusta T.L., Starker C.G., Krug R.G., 2nd, Tan W., Penheiter S.G., Ma A.C., Leung A.Y., et al. In vivo genome editing using a high-efficiency TALEN system. Nature. 2012;491:114–118. doi: 10.1038/nature11537. PubMed DOI PMC

Solin S.L., Shive H.R., Woolard K.D., Essner J.J., McGrail M. Rapid tumor induction in zebrafish by TALEN-mediated somatic inactivation of the retinoblastoma1 tumor suppressor rb1. Sci. Rep. 2015;5:13745. doi: 10.1038/srep13745. PubMed DOI PMC

Shim J., Choi J.H., Park M.H., Kim H., Kim J.H., Kim S.Y., Hong D., Kim S., Lee J.E., Kim C.H., et al. Development of zebrafish medulloblastoma-like PNET model by TALEN-mediated somatic gene inactivation. Oncotarget. 2017;8:55280–55297. doi: 10.18632/oncotarget.19424. PubMed DOI PMC

Yin L., Maddison L.A., Chen W. Multiplex conditional mutagenesis in zebrafish using the CRISPR/Cas system. Methods Cell Biol. 2016;135:3–17. PubMed

Moreno-Mateos M.A., Vejnar C.E., Beaudoin J.D., Fernandez J.P., Mis E.K., Khokha M.K., Giraldez A.J. CRISPRscan: Designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat. Methods. 2015;12:982–988. doi: 10.1038/nmeth.3543. PubMed DOI PMC

Liu K., Petree C., Requena T., Varshney P., Varshney G.K. Expanding the CRISPR Toolbox in Zebrafish for Studying Development and Disease. Front. Cell Dev. Biol. 2019;7:13. doi: 10.3389/fcell.2019.00013. PubMed DOI PMC

Ablain J., Xu M., Rothschild H., Jordan R.C., Mito J.K., Daniels B.H., Bell C.F., Joseph N.M., Wu H., Bastian B.C., et al. Human tumor genomics and zebrafish modeling identify SPRED1 loss as a driver of mucosal melanoma. Science. 2018;362:1055–1060. doi: 10.1126/science.aau6509. PubMed DOI PMC

Burger A., Lindsay H., Felker A., Hess C., Anders C., Chiavacci E., Zaugg J., Weber L.M., Catena R., Jinek M., et al. Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes. Development. 2016;143:2025–2037. doi: 10.1242/dev.134809. PubMed DOI

Wu W.Y., Lebbink J.H.G., Kanaar R., Geijsen N., van der Oost J. Genome editing by natural and engineered CRISPR-associated nucleases. Nat. Chem. Biol. 2018;14:642–651. doi: 10.1038/s41589-018-0080-x. PubMed DOI

Kleinstiver B.P., Sousa A.A., Walton R.T., Tak Y.E., Hsu J.Y., Clement K., Welch M.M., Horng J.E., Malagon-Lopez J., Scarfo I., et al. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat. Biotechnol. 2019;37:276–282. doi: 10.1038/s41587-018-0011-0. PubMed DOI PMC

Liu P., Luk K., Shin M., Idrizi F., Kwok S., Roscoe B., Mintzer E., Suresh S., Morrison K., Frazao J.B., et al. Enhanced Cas12a editing in mammalian cells and zebrafish. Nucleic Acids Res. 2019;47:4169–4180. doi: 10.1093/nar/gkz184. PubMed DOI PMC

Fernandez J.P., Vejnar C.E., Giraldez A.J., Rouet R., Moreno-Mateos M.A. Optimized CRISPR-Cpf1 system for genome editing in zebrafish. Methods. 2018;150:11–18. doi: 10.1016/j.ymeth.2018.06.014. PubMed DOI PMC

Liao H.K., Hatanaka F., Araoka T., Reddy P., Wu M.Z., Sui Y., Yamauchi T., Sakurai M., O’Keefe D.D., Nunez-Delicado E., et al. In Vivo Target Gene Activation via CRISPR/Cas9-Mediated Trans-epigenetic Modulation. Cell. 2017;171:1495–1507. doi: 10.1016/j.cell.2017.10.025. PubMed DOI PMC

Plass C., Pfister S.M., Lindroth A.M., Bogatyrova O., Claus R., Lichter P. Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nat. Rev. Genet. 2013;14:765–780. doi: 10.1038/nrg3554. PubMed DOI

Herceg Z., Ghantous A., Wild C.P., Sklias A., Casati L., Duthie S.J., Fry R., Issa J.P., Kellermayer R., Koturbash I., et al. Roadmap for investigating epigenome deregulation and environmental origins of cancer. Int. J. Cancer. 2018;142:874–882. doi: 10.1002/ijc.31014. PubMed DOI PMC

Wee S., Dhanak D., Li H., Armstrong S.A., Copeland R.A., Sims R., Baylin S.B., Liu X.S., Schweizer L. Targeting epigenetic regulators for cancer therapy. Ann. N. Y. Acad. Sci. 2014;1309:30–36. doi: 10.1111/nyas.12356. PubMed DOI

Grimwade D., Ivey A., Huntly B.J. Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance. Blood. 2016;127:29–41. doi: 10.1182/blood-2015-07-604496. PubMed DOI PMC

Shih A.H., Meydan C., Shank K., Garrett-Bakelman F.E., Ward P.S., Intlekofer A., Nazir A., Stein E., Knapp K., Glass J., et al. Combination Targeted Therapy to Disrupt Aberrant Oncogenic Signaling and Reverse Epigenetic Dysfunction in IDH2- and TET2-Mutant Acute Myeloid Leukemia. Cancer Discov. 2017;7:494–505. doi: 10.1158/2159-8290.CD-16-1049. PubMed DOI PMC

Kelly A.D., Issa J.J. The promise of epigenetic therapy: Reprogramming the cancer epigenome. Curr. Opin. Genet. Dev. 2017;42:68–77. doi: 10.1016/j.gde.2017.03.015. PubMed DOI

Aspeslagh S., Morel D., Soria J.C., Postel-Vinay S. Epigenetic modifiers as new immunomodulatory therapies in solid tumours. Ann. Oncol. 2018;29:812–824. doi: 10.1093/annonc/mdy050. PubMed DOI

Wang L., Zhao Z., Ozark P.A., Fantini D., Marshall S.A., Rendleman E.J., Cozzolino K.A., Louis N., He X., Morgan M.A., et al. Resetting the epigenetic balance of Polycomb and COMPASS function at enhancers for cancer therapy. Nat. Med. 2018;24:758–769. doi: 10.1038/s41591-018-0034-6. PubMed DOI PMC

Karanikolas B.D., Figueiredo M.L., Wu L. Polycomb group protein enhancer of zeste 2 is an oncogene that promotes the neoplastic transformation of a benign prostatic epithelial cell line. Mol. Cancer Res. MCR. 2009;7:1456–1465. doi: 10.1158/1541-7786.MCR-09-0121. PubMed DOI PMC

Ernst T., Chase A.J., Score J., Hidalgo-Curtis C.E., Bryant C., Jones A.V., Waghorn K., Zoi K., Ross F.M., Reiter A., et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat. Genet. 2010;42:722–726. doi: 10.1038/ng.621. PubMed DOI

Zhu J., Sammons M.A., Donahue G., Dou Z., Vedadi M., Getlik M., Barsyte-Lovejoy D., Al-awar R., Katona B.W., Shilatifard A., et al. Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth. Nature. 2015;525:206–211. doi: 10.1038/nature15251. PubMed DOI PMC

Shamma A., Takegami Y., Miki T., Kitajima S., Noda M., Obara T., Okamoto T., Takahashi C. Rb Regulates DNA damage response and cellular senescence through E2F-dependent suppression of N-ras isoprenylation. Cancer Cell. 2009;15:255–269. doi: 10.1016/j.ccr.2009.03.001. PubMed DOI

Lam S.H., Chua H.L., Gong Z., Lam T.J., Sin Y.M. Development and maturation of the immune system in zebrafish, Danio rerio: A gene expression profiling, in situ hybridization and immunological study. Dev. Comp. Immunol. 2004;28:9–28. doi: 10.1016/S0145-305X(03)00103-4. PubMed DOI

Traver D., Winzeler A., Stern H.M., Mayhall E.A., Langenau D.M., Kutok J.L., Look A.T., Zon L.I. Effects of lethal irradiation in zebrafish and rescue by hematopoietic cell transplantation. Blood. 2004;104:1298–1305. doi: 10.1182/blood-2004-01-0100. PubMed DOI

Langenau D.M., Ferrando A.A., Traver D., Kutok J.L., Hezel J.P., Kanki J.P., Zon L.I., Look A.T., Trede N.S. In vivo tracking of T cell development, ablation, and engraftment in transgenic zebrafish. Proc. Natl. Acad. Sci. USA. 2004;101:7369–7374. doi: 10.1073/pnas.0402248101. PubMed DOI PMC

King M.A., Covassin L., Brehm M.A., Racki W., Pearson T., Leif J., Laning J., Fodor W., Foreman O., Burzenski L., et al. Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft-versus-host-like disease and the role of host major histocompatibility complex. Clin. Exp. Immunol. 2009;157:104–118. doi: 10.1111/j.1365-2249.2009.03933.x. PubMed DOI PMC

Tang Q., Abdelfattah N.S., Blackburn J.S., Moore J.C., Martinez S.A., Moore F.E., Lobbardi R., Tenente I.M., Ignatius M.S., Berman J.N., et al. Optimized cell transplantation using adult rag2 mutant zebrafish. Nat. Meth. 2014;11:821–824. doi: 10.1038/nmeth.3031. PubMed DOI PMC

Stoletov K., Montel V., Lester R.D., Gonias S.L., Klemke R. High-resolution imaging of the dynamic tumor cell vascular interface in transparent zebrafish. Proc. Natl. Acad. Sci. USA. 2007;104:17406–17411. doi: 10.1073/pnas.0703446104. PubMed DOI PMC

Mizgireuv I.V., Revskoy S.Y. Transplantable tumor lines generated in clonal zebrafish. Cancer Res. 2006;66:3120–3125. doi: 10.1158/0008-5472.CAN-05-3800. PubMed DOI

Smith A.C., Raimondi A.R., Salthouse C.D., Ignatius M.S., Blackburn J.S., Mizgirev I.V., Storer N.Y., de Jong J.L., Chen A.T., Zhou Y., et al. High-throughput cell transplantation establishes that tumor-initiating cells are abundant in zebrafish T-cell acute lymphoblastic leukemia. Blood. 2010;115:3296–3303. doi: 10.1182/blood-2009-10-246488. PubMed DOI PMC

De La Rochere P., Guil-Luna S., Decaudin D., Azar G., Sidhu S.S., Piaggio E. Humanized Mice for the Study of Immuno-Oncology. Trends Immunol. 2018;39:748–763. doi: 10.1016/j.it.2018.07.001. PubMed DOI

Tang Q., Moore J.C., Ignatius M.S., Tenente I.M., Hayes M.N., Garcia E.G., Torres Yordan N., Bourque C., He S., Blackburn J.S., et al. Imaging tumour cell heterogeneity following cell transplantation into optically clear immune-deficient zebrafish. Nat. Commun. 2016;7:10358. doi: 10.1038/ncomms10358. PubMed DOI PMC

Moore J.C., Tang Q., Yordan N.T., Moore F.E., Garcia E.G., Lobbardi R., Ramakrishnan A., Marvin D.L., Anselmo A., Sadreyev R.I., et al. Single-cell imaging of normal and malignant cell engraftment into optically clear prkdc-null SCID zebrafish. J. Exp. Med. 2016;213:2575–2589. doi: 10.1084/jem.20160378. PubMed DOI PMC

Heilmann S., Ratnakumar K., Langdon E.M., Kansler E.R., Kim I.S., Campbell N.R., Perry E.B., McMahon A.J., Kaufman C.K., van Rooijen E., et al. A Quantitative System for Studying Metastasis Using Transparent Zebrafish. Cancer Res. 2015;75:4272–4282. doi: 10.1158/0008-5472.CAN-14-3319. PubMed DOI PMC

Benjamin D.C., Hynes R.O. Intravital imaging of metastasis in adult Zebrafish. BMC Cancer. 2017;17:660. doi: 10.1186/s12885-017-3647-0. PubMed DOI PMC

Hyenne V., Ghoroghi S., Collot M., Bons J., Follain G., Harlepp S., Mary B., Bauer J., Mercier L., Busnelli I., et al. Studying the Fate of Tumor Extracellular Vesicles at High Spatiotemporal Resolution Using the Zebrafish Embryo. Dev. Cell. 2019;48:554–572. doi: 10.1016/j.devcel.2019.01.014. PubMed DOI

Lee L.M., Seftor E.A., Bonde G., Cornell R.A., Hendrix M.J. The fate of human malignant melanoma cells transplanted into zebrafish embryos: Assessment of migration and cell division in the absence of tumor formation. Dev. Dyn. 2005;233:1560–1570. doi: 10.1002/dvdy.20471. PubMed DOI

Topczewska J.M., Postovit L.M., Margaryan N.V., Sam A., Hess A.R., Wheaton W.W., Nickoloff B.J., Topczewski J., Hendrix M.J. Embryonic and tumorigenic pathways converge via Nodal signaling: Role in melanoma aggressiveness. Nat. Med. 2006;12:925–932. doi: 10.1038/nm1448. PubMed DOI

Haldi M., Ton C., Seng W.L., McGrath P. Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis. 2006;9:139–151. doi: 10.1007/s10456-006-9040-2. PubMed DOI

Olszewski M.B., Pruszko M., Snaar-Jagalska E., Zylicz A., Zylicz M. Diverse and cancer typespecific roles of the p53 R248Q gainoffunction mutation in cancer migration and invasiveness. Int. J. Oncol. 2019;54:1168–1182. PubMed PMC

Zhang B., Xuan C., Ji Y., Zhang W., Wang D. Zebrafish xenotransplantation as a tool for in vivo cancer study. Fam. Cancer. 2015;14:487–493. doi: 10.1007/s10689-015-9802-3. PubMed DOI

Cabezas-Sainz P., Guerra-Varela J., Carreira M.J., Mariscal J., Roel M., Rubiolo J.A., Sciara A.A., Abal M., Botana L.M., Lopez R., et al. Improving zebrafish embryo xenotransplantation conditions by increasing incubation temperature and establishing a proliferation index with ZFtool. BMC Cancer. 2018;18:3. doi: 10.1186/s12885-017-3919-8. PubMed DOI PMC

Marques I.J., Weiss F.U., Vlecken D.H., Nitsche C., Bakkers J., Lagendijk A.K., Partecke L.I., Heidecke C.D., Lerch M.M., Bagowski C.P. Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model. BMC Cancer. 2009;9:14. doi: 10.1186/1471-2407-9-128. PubMed DOI PMC

Nicoli S., Presta M. The zebrafish/tumor xenograft angiogenesis assay. Nat. Protoc. 2007;2:2918–2923. doi: 10.1038/nprot.2007.412. PubMed DOI

Nicoli S., Ribatti D., Cotelli F., Presta M. Mammalian tumor xenografts induce neovascularization in zebrafish embryos. Cancer Res. 2007;67:2927–2931. PubMed

Zhao C., Wang X., Zhao Y., Li Z., Lin S., Wei Y., Yang H. A novel xenograft model in zebrafish for high-resolution investigating dynamics of neovascularization in tumors. PLoS ONE. 2011;6:e21768. doi: 10.1371/journal.pone.0021768. PubMed DOI PMC

Chiavacci E., Rizzo M., Pitto L., Patella F., Evangelista M., Mariani L., Rainaldi G. The zebrafish/tumor xenograft angiogenesis assay as a tool for screening anti-angiogenic miRNAs. Cytotechnology. 2015;67:969–975. doi: 10.1007/s10616-014-9735-y. PubMed DOI PMC

Cheng S.Y., Chen N.F., Lin P.Y., Su J.H., Chen B.H., Kuo H.M., Sung C.S., Sung P.J., Wen Z.H., Chen W.F. Anti-Invasion and Antiangiogenic Effects of Stellettin B through Inhibition of the Akt/Girdin Signaling Pathway and VEGF in Glioblastoma Cells. Cancers. 2019;11:220. doi: 10.3390/cancers11020220. PubMed DOI PMC

Gabellini C., Gomez-Abenza E., Ibanez-Molero S., Tupone M.G., Perez-Oliva A.B., de Oliveira S., Del Bufalo D., Mulero V. Interleukin 8 mediates bcl-xL-induced enhancement of human melanoma cell dissemination and angiogenesis in a zebrafish xenograft model. Int. J. Cancer. 2018;142:584–596. doi: 10.1002/ijc.31075. PubMed DOI

Corkery D.P., Dellaire G., Berman J.N. Leukaemia xenotransplantation in zebrafish--chemotherapy response assay in vivo. Br. J. Haematol. 2011;153:786–789. doi: 10.1111/j.1365-2141.2011.08661.x. PubMed DOI

Pruvot B., Jacquel A., Droin N., Auberger P., Bouscary D., Tamburini J., Muller M., Fontenay M., Chluba J., Solary E. Leukemic cell xenograft in zebrafish embryo for investigating drug efficacy. Haematologica. 2011;96:612–616. doi: 10.3324/haematol.2010.031401. PubMed DOI PMC

Bentley V.L., Veinotte C.J., Corkery D.P., Pinder J.B., LeBlanc M.A., Bedard K., Weng A.P., Berman J.N., Dellaire G. Focused chemical genomics using zebrafish xenotransplantation as a preclinical therapeutic platform for T-cell acute lymphoblastic leukemia. Haematologica. 2015;100:70–76. doi: 10.3324/haematol.2014.110742. PubMed DOI PMC

Lin J., Zhang W., Zhao J.J., Kwart A.H., Yang C., Ma D., Ren X., Tai Y.T., Anderson K.C., Handin R.I., et al. A clinically relevant in vivo zebrafish model of human multiple myeloma to study preclinical therapeutic efficacy. Blood. 2016;128:249–252. doi: 10.1182/blood-2016-03-704460. PubMed DOI PMC

Sacco A., Roccaro A.M., Ma D., Shi J., Mishima Y., Moschetta M., Chiarini M., Munshi N., Handin R.I., Ghobrial I.M. Cancer Cell Dissemination and Homing to the Bone Marrow in a Zebrafish Model. Cancer Res. 2016;76:463–471. doi: 10.1158/0008-5472.CAN-15-1926. PubMed DOI

van der Ent W., Burrello C., Teunisse A.F., Ksander B.R., van der Velden P.A., Jager M.J., Jochemsen A.G., Snaar-Jagalska B.E. Modeling of human uveal melanoma in zebrafish xenograft embryos. Investig. Ophthalmol. Vis. Sci. 2014;55:6612–6622. doi: 10.1167/iovs.14-15202. PubMed DOI

Teng Y., Xie X., Walker S., White D.T., Mumm J.S., Cowell J.K. Evaluating human cancer cell metastasis in zebrafish. BMC Cancer. 2013;13:453. doi: 10.1186/1471-2407-13-453. PubMed DOI PMC

Vittori M., Breznik B., Hrovat K., Kenig S., Lah T.T. RECQ1 Helicase Silencing Decreases the Tumour Growth Rate of U87 Glioblastoma Cell Xenografts in Zebrafish Embryos. Genes. 2017;8:222. doi: 10.3390/genes8090222. PubMed DOI PMC

Lam S.H., Lee S.G., Lin C.Y., Thomsen J.S., Fu P.Y., Murthy K.R., Li H., Govindarajan K.R., Nick L.C., Bourque G., et al. Molecular conservation of estrogen-response associated with cell cycle regulation, hormonal carcinogenesis and cancer in zebrafish and human cancer cell lines. BMC Med. Genom. 2011;4:41. doi: 10.1186/1755-8794-4-41. PubMed DOI PMC

Ghotra V.P., He S., de Bont H., van der Ent W., Spaink H.P., van de Water B., Snaar-Jagalska B.E., Danen E.H. Automated whole animal bio-imaging assay for human cancer dissemination. PLoS ONE. 2012;7:e31281. doi: 10.1371/journal.pone.0031281. PubMed DOI PMC

Drabsch Y., He S., Zhang L., Snaar-Jagalska B.E., ten Dijke P. Transforming growth factor-beta signalling controls human breast cancer metastasis in a zebrafish xenograft model. Breast Cancer Res. BCR. 2013;15:R106. doi: 10.1186/bcr3573. PubMed DOI PMC

Naber H.P., Drabsch Y., Snaar-Jagalska B.E., ten Dijke P., van Laar T. Snail and Slug, key regulators of TGF-beta-induced EMT, are sufficient for the induction of single-cell invasion. Biochem. Biophys. Res. Commun. 2013;435:58–63. doi: 10.1016/j.bbrc.2013.04.037. PubMed DOI

Truong H.H., Xiong J., Ghotra V.P., Nirmala E., Haazen L., Le Devedec S.E., Balcioglu H.E., He S., Snaar-Jagalska B.E., Vreugdenhil E., et al. beta1 integrin inhibition elicits a prometastatic switch through the TGFbeta-miR-200-ZEB network in E-cadherin-positive triple-negative breast cancer. Sci. Signal. 2014;7:ra15. doi: 10.1126/scisignal.2004751. PubMed DOI

de Boeck M., Cui C., Mulder A.A., Jost C.R., Ikeno S., Ten Dijke P. Smad6 determines BMP-regulated invasive behaviour of breast cancer cells in a zebrafish xenograft model. Sci. Rep. 2016;6:24968. doi: 10.1038/srep24968. PubMed DOI PMC

Tulotta C., Stefanescu C., Beletkaia E., Bussmann J., Tarbashevich K., Schmidt T., Snaar-Jagalska B.E. Inhibition of signaling between human CXCR4 and zebrafish ligands by the small molecule IT1t impairs the formation of triple-negative breast cancer early metastases in a zebrafish xenograft model. Dis. Models Mech. 2016;9:141–153. doi: 10.1242/dmm.023275. PubMed DOI PMC

Tulotta C., Stefanescu C., Chen Q., Torraca V., Meijer A.H., Snaar-Jagalska B.E. CXCR4 signaling regulates metastatic onset by controlling neutrophil motility and response to malignant cells. Sci. Rep. 2019;9:2399. doi: 10.1038/s41598-019-38643-2. PubMed DOI PMC

Ben-Porath I., Thomson M.W., Carey V.J., Ge R., Bell G.W., Regev A., Weinberg R.A. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat. Genet. 2008;40:499–507. doi: 10.1038/ng.127. PubMed DOI PMC

Finicelli M., Benedetti G., Squillaro T., Pistilli B., Marcellusi A., Mariani P., Santinelli A., Latini L., Galderisi U., Giordano A. Expression of stemness genes in primary breast cancer tissues: The role of SOX2 as a prognostic marker for detection of early recurrence. Oncotarget. 2014;5:9678–9688. doi: 10.18632/oncotarget.1936. PubMed DOI PMC

Schaefer T., Wang H., Mir P., Konantz M., Pereboom T.C., Paczulla A.M., Merz B., Fehm T., Perner S., Rothfuss O.C., et al. Molecular and functional interactions between AKT and SOX2 in breast carcinoma. Oncotarget. 2015;6:43540–43556. doi: 10.18632/oncotarget.6183. PubMed DOI PMC

Mercatali L., La Manna F., Groenewoud A., Casadei R., Recine F., Miserocchi G., Pieri F., Liverani C., Bongiovanni A., Spadazzi C., et al. Development of a Patient-Derived Xenograft (PDX) of Breast Cancer Bone Metastasis in a Zebrafish Model. Int. J. Mol. Sci. 2016;17:1375. doi: 10.3390/ijms17081375. PubMed DOI PMC

Ghotra V.P., He S., van der Horst G., Nijhoff S., de Bont H., Lekkerkerker A., Janssen R., Jenster G., van Leenders G.J., Hoogland A.M., et al. SYK Is a Candidate Kinase Target for the Treatment of Advanced Prostate Cancer. Cancer Res. 2015;75:230–240. doi: 10.1158/0008-5472.CAN-14-0629. PubMed DOI

Melong N., Steele S., MacDonald M., Holly A., Collins C.C., Zoubeidi A., Berman J.N., Dellaire G. Enzalutamide inhibits testosterone-induced growth of human prostate cancer xenografts in zebrafish and can induce bradycardia. Sci. Rep. 2017;7:14698. doi: 10.1038/s41598-017-14413-w. PubMed DOI PMC

Xu W., Foster B.A., Richards M., Bondioli K.R., Shah G., Green C.C. Characterization of prostate cancer cell progression in zebrafish xenograft model. Int. J. Oncol. 2018;52:252–260. doi: 10.3892/ijo.2017.4189. PubMed DOI PMC

Chen X., Wang J., Cao Z., Hosaka K., Jensen L., Yang H., Sun Y., Zhuang R., Liu Y., Cao Y. Invasiveness and metastasis of retinoblastoma in an orthotopic zebrafish tumor model. Sci. Rep. 2015;5:10351. doi: 10.1038/srep10351. PubMed DOI PMC

Welker A.M., Jaros B.D., An M., Beattie C.E. Changes in tumor cell heterogeneity after chemotherapy treatment in a xenograft model of glioblastoma. Neuroscience. 2017;356:35–43. doi: 10.1016/j.neuroscience.2017.05.010. PubMed DOI PMC

Zeng A., Ye T., Cao D., Huang X., Yang Y., Chen X., Xie Y., Yao S., Zhao C. Identify a Blood-Brain Barrier Penetrating Drug-TNB using Zebrafish Orthotopic Glioblastoma Xenograft Model. Sci. Rep. 2017;7:14372. doi: 10.1038/s41598-017-14766-2. PubMed DOI PMC

Banasavadi-Siddegowda Y.K., Welker A.M., An M., Yang X., Zhou W., Shi G., Imitola J., Li C., Hsu S., Wang J., et al. PRMT5 as a druggable target for glioblastoma therapy. Neuro Oncol. 2018;20:753–763. doi: 10.1093/neuonc/nox206. PubMed DOI PMC

Pudelko L., Edwards S., Balan M., Nyqvist D., Al-Saadi J., Dittmer J., Almlof I., Helleday T., Brautigam L. An orthotopic glioblastoma animal model suitable for high-throughput screenings. Neuro Oncol. 2018;20:1475–1484. doi: 10.1093/neuonc/noy071. PubMed DOI PMC

Ellis H.P., Greenslade M., Powell B., Spiteri I., Sottoriva A., Kurian K.M. Current Challenges in Glioblastoma: Intratumour Heterogeneity, Residual Disease, and Models to Predict Disease Recurrence. Front. Oncol. 2015;5:251. doi: 10.3389/fonc.2015.00251. PubMed DOI PMC

Roel M., Rubiolo J.A., Guerra-Varela J., Silva S.B., Thomas O.P., Cabezas-Sainz P., Sanchez L., Lopez R., Botana L.M. Marine guanidine alkaloids crambescidins inhibit tumor growth and activate intrinsic apoptotic signaling inducing tumor regression in a colorectal carcinoma zebrafish xenograft model. Oncotarget. 2016;7:83071–83087. doi: 10.18632/oncotarget.13068. PubMed DOI PMC

Chang T.C., Wei P.L., Makondi P.T., Chen W.T., Huang C.Y., Chang Y.J. Bromelain inhibits the ability of colorectal cancer cells to proliferate via activation of ROS production and autophagy. PLoS ONE. 2019;14:e0210274. doi: 10.1371/journal.pone.0210274. PubMed DOI PMC

Wu J.Q., Zhai J., Li C.Y., Tan A.M., Wei P., Shen L.Z., He M.F. Patient-derived xenograft in zebrafish embryos: A new platform for translational research in gastric cancer. J. Exp. Clin. Cancer Res. CR. 2017;36:160. doi: 10.1186/s13046-017-0631-0. PubMed DOI PMC

Tsering J., Hu X. Triphala Suppresses Growth and Migration of Human Gastric Carcinoma Cells In Vitro and in a Zebrafish Xenograft Model. BioMed Res. Int. 2018;2018:7046927. doi: 10.1155/2018/7046927. PubMed DOI PMC

Yu C.I., Chen C.Y., Liu W., Chang P.C., Huang C.W., Han K.F., Lin I.P., Lin M.Y., Lee C.H. Sandensolide Induces Oxidative Stress-Mediated Apoptosis in Oral Cancer Cells and in Zebrafish Xenograft Model. Mar. Drugs. 2018;16:387. doi: 10.3390/md16100387. PubMed DOI PMC

Jin Y., Wei L., Jiang Q., Song X., Teng C., Fan C., Lv Y., Liu Y., Shen W., Li L., et al. Comparison of efficacy and toxicity of bevacizumab, endostar and apatinib in transgenic and human lung cancer xenograftzebrafish model. Sci. Rep. 2018;8:15837. doi: 10.1038/s41598-018-34030-5. PubMed DOI PMC

Chou H.L., Lin Y.H., Liu W., Wu C.Y., Li R.N., Huang H.W., Chou C.H., Chiou S.J., Chiu C.C. Combination Therapy of Chloroquine and C(2)-Ceramide Enhances Cytotoxicity in Lung Cancer H460 and H1299 Cells. Cancers. 2019;11:370. doi: 10.3390/cancers11030370. PubMed DOI PMC

van der Ent W., Jochemsen A.G., Teunisse A.F., Krens S.F., Szuhai K., Spaink H.P., Hogendoorn P.C., Snaar-Jagalska B.E. Ewing sarcoma inhibition by disruption of EWSR1-FLI1 transcriptional activity and reactivation of p53. J. Pathol. 2014;233:415–424. doi: 10.1002/path.4378. PubMed DOI

Zhang B., Shimada Y., Kuroyanagi J., Nishimura Y., Umemoto N., Nomoto T., Shintou T., Miyazaki T., Tanaka T. Zebrafish xenotransplantation model for cancer stem-like cell study and high-throughput screening of inhibitors. Tumor Biol. 2014;35:11861–11869. doi: 10.1007/s13277-014-2417-8. PubMed DOI

Khan N., Mahajan N.K., Sinha P., Jayandharan G.R. An efficient method to generate xenograft tumor models of acute myeloid leukemia and hepatocellular carcinoma in adult zebrafish. Blood Cells Mol. Dis. 2019;75:48–55. doi: 10.1016/j.bcmd.2018.12.007. PubMed DOI

Yan C., Brunson D.C., Tang Q., Do D., Iftimia N.A., Moore J.C., Hayes M.N., Welker A.M., Garcia E.G., Dubash T.D., et al. Visualizing Engrafted Human Cancer and Therapy Responses in Immunodeficient Zebrafish. Cell. 2019;177:1903–1914. doi: 10.1016/j.cell.2019.04.004. PubMed DOI PMC

Zhao S., Huang J., Ye J. A fresh look at zebrafish from the perspective of cancer research. J. Exp. Clin. Cancer Res. CR. 2015;34:80. doi: 10.1186/s13046-015-0196-8. PubMed DOI PMC

Wang C., Tao W., Wang Y., Bikow J., Lu B., Keating A., Verma S., Parker T.G., Han R., Wen X.Y. Rosuvastatin, identified from a zebrafish chemical genetic screen for antiangiogenic compounds, suppresses the growth of prostate cancer. Eur. Urol. 2010;58:418–426. doi: 10.1016/j.eururo.2010.05.024. PubMed DOI

White R.M., Cech J., Ratanasirintrawoot S., Lin C.Y., Rahl P.B., Burke C.J., Langdon E., Tomlinson M.L., Mosher J., Kaufman C., et al. DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature. 2011;471:518–522. doi: 10.1038/nature09882. PubMed DOI PMC

Ridges S., Heaton W.L., Joshi D., Choi H., Eiring A., Batchelor L., Choudhry P., Manos E.J., Sofla H., Sanati A., et al. Zebrafish screen identifies novel compound with selective toxicity against leukemia. Blood. 2012;119:5621–5631. doi: 10.1182/blood-2011-12-398818. PubMed DOI PMC

Gutierrez A., Pan L., Groen R.W., Baleydier F., Kentsis A., Marineau J., Grebliunaite R., Kozakewich E., Reed C., Pflumio F., et al. Phenothiazines induce PP2A-mediated apoptosis in T cell acute lymphoblastic leukemia. J. Clin. Investig. 2014;124:644–655. doi: 10.1172/JCI65093. PubMed DOI PMC

Precazzini F., Pancher M., Gatto P., Tushe A., Adami V., Anelli V., Mione M.C. Automated in vivo screen in zebrafish identifies Clotrimazole as targeting a metabolic vulnerability in a melanoma model. Dev. Biol. 2019 doi: 10.1016/j.ydbio.2019.04.005. in press. PubMed DOI

Stern H.M., Murphey R.D., Shepard J.L., Amatruda J.F., Straub C.T., Pfaff K.L., Weber G., Tallarico J.A., King R.W., Zon L.I. Small molecules that delay S phase suppress a zebrafish bmyb mutant. Nat. Chem. Biol. 2005;1:366–370. doi: 10.1038/nchembio749. PubMed DOI

Camus S., Quevedo C., Menendez S., Paramonov I., Stouten P.F., Janssen R.A., Rueb S., He S., Snaar-Jagalska B.E., Laricchia-Robbio L., et al. Identification of phosphorylase kinase as a novel therapeutic target through high-throughput screening for anti-angiogenesis compounds in zebrafish. Oncogene. 2012;31:4333–4342. doi: 10.1038/onc.2011.594. PubMed DOI

Murphy A.G., Casey R., Maguire A., Tosetto M., Butler C.T., Conroy E., Reynolds A.L., Sheahan K., O’Donoghue D., Gallagher W.M., et al. Preclinical validation of the small molecule drug quininib as a novel therapeutic for colorectal cancer. Sci. Rep. 2016;6:34523. doi: 10.1038/srep34523. PubMed DOI PMC

Astin J.W., Jamieson S.M., Eng T.C., Flores M.V., Misa J.P., Chien A., Crosier K.E., Crosier P.S. An in vivo antilymphatic screen in zebrafish identifies novel inhibitors of mammalian lymphangiogenesis and lymphatic-mediated metastasis. Mol. Cancer. 2014;13:2450–2462. doi: 10.1158/1535-7163.MCT-14-0469-T. PubMed DOI

Dang M., Henderson R.E., Garraway L.A., Zon L.I. Long-term drug administration in the adult zebrafish using oral gavage for cancer preclinical studies. Dis. Models Mech. 2016;9:811–820. doi: 10.1242/dmm.024166. PubMed DOI PMC

Tamplin O.J., White R.M., Jing L., Kaufman C.K., Lacadie S.A., Li P., Taylor A.M., Zon L.I. Small molecule screening in zebrafish: Swimming in potential drug therapies. Wiley Interdiscip. Rev. Dev. Biol. 2012;1:459–468. doi: 10.1002/wdev.37. PubMed DOI PMC

Gutierrez-Lovera C., Vazquez-Rios A.J., Guerra-Varela J., Sanchez L., de la Fuente M. The Potential of Zebrafish as a Model Organism for Improving the Translation of Genetic Anticancer Nanomedicines. Genes. 2017;8:349. doi: 10.3390/genes8120349. PubMed DOI PMC

Ito M., Hiramatsu H., Kobayashi K., Suzue K., Kawahata M., Hioki K., Ueyama Y., Koyanagi Y., Sugamura K., Tsuji K., et al. NOD/SCID/gamma(c)(null) mouse: An excellent recipient mouse model for engraftment of human cells. Blood. 2002;100:3175–3182. doi: 10.1182/blood-2001-12-0207. PubMed DOI

Murphey R.D., Zon L.I. Small molecule screening in the zebrafish. Methods. 2006;39:255–261. doi: 10.1016/j.ymeth.2005.09.019. PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

Bioluminescent Zebrafish Transplantation Model for Drug Discovery

. 2022 ; 13 () : 893655. [epub] 20220427

Special Issue: Animal Modeling in Cancer

. 2020 Aug 27 ; 11 (9) : . [epub] 20200827

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...