Nitrogen nutrition modulates oxidative stress and metabolite production in Hypericum perforatum

. 2020 Mar ; 257 (2) : 439-447. [epub] 20191120

Jazyk angličtina Země Rakousko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31748976

Grantová podpora
VEGA (project no. 1/0041/18) Vedecká Grantová Agentúra MŠVVaŠ SR a SAV

Odkazy

PubMed 31748976
DOI 10.1007/s00709-019-01448-1
PII: 10.1007/s00709-019-01448-1
Knihovny.cz E-zdroje

Impact of various nitrate concentrations (14.12 mM, 3.53 mM, no nitrate) or ammonium presence (14.12 mM) on physiological and metabolic changes in Hypericum perforatum after 14 days of cultivation was monitored. Nitrate deficiency suppressed growth of shoots but stimulated root growth while ammonium suppressed root growth: concomitant changes of ascorbic acid and glutathione supported these growth changes, e.g., unaltered level in roots under nitrate deficiency but depleted in ammonium treatment. Soluble proteins and water content were more suppressed by nitrate deficiency but total ROS, nitric oxide formation, and antioxidative enzyme activities (APX and SOD) indicate higher sensitivity of plants to ammonium. Though both extreme treatments (NO3- deficiency or ammonium) stimulated accumulation of total soluble phenols and affected PAL activity (in comparison with full or 1/4× nitrate dose), major phenols (chlorogenic acid and three flavonoids) were elevated mainly by NO3- deficiency. At the level of specific metabolites, NO3- deficiency had stimulatory impact on pseudohypericin (but not hypericin) content while hyperforin decreased. Expression of earlier putative gene of hypericin biosynthesis (hyp-1) showed rather partial correlation with pseudohypericin amount. Data indicate that depletion of NO3- is useful to obtain Hypericum plants with higher amount of health-positive secondary metabolites.

Zobrazit více v PubMed

Plant Cell. 1995 Jul;7(7):1085-1097 PubMed

Protoplasma. 2017 Nov;254(6):2143-2153 PubMed

Nitric Oxide. 2019 Feb 1;83:11-18 PubMed

Free Radic Biol Med. 1996;20(7):933-56 PubMed

Anal Biochem. 1976 May 7;72:248-54 PubMed

J Pharm Biomed Anal. 2018 Jun 5;155:82-90 PubMed

J Plant Physiol. 2014 Feb 15;171(3-4):260-8 PubMed

Plant Cell Physiol. 2005 Aug;46(8):1350-7 PubMed

Front Plant Sci. 2016 May 18;7:668 PubMed

Methods. 2001 Dec;25(4):402-8 PubMed

Nitric Oxide. 2006 Dec;15(4):351-8 PubMed

Food Chem. 2014 Jan 1;142:334-41 PubMed

Chemosphere. 2017 Aug;180:86-92 PubMed

Protoplasma. 2019 Jan;256(1):147-159 PubMed

Ann Bot. 2015 Sep;116(4):601-12 PubMed

Plant Physiol. 2004 Oct;136(2):3114-23; discussion 3001 PubMed

J Hazard Mater. 2015 Apr 9;286:334-42 PubMed

Plant Physiol Biochem. 2016 Nov;108:222-230 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace