Nitrogen nutrition modulates oxidative stress and metabolite production in Hypericum perforatum
Jazyk angličtina Země Rakousko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
VEGA (project no. 1/0041/18)
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
PubMed
31748976
DOI
10.1007/s00709-019-01448-1
PII: 10.1007/s00709-019-01448-1
Knihovny.cz E-zdroje
- Klíčová slova
- Antioxidants, Fluorescence microscopy, Mineral nutrition, Phenols, Secondary metabolites,
- MeSH
- dusík chemie MeSH
- oxidační stres MeSH
- semenáček chemie MeSH
- třezalka chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dusík MeSH
Impact of various nitrate concentrations (14.12 mM, 3.53 mM, no nitrate) or ammonium presence (14.12 mM) on physiological and metabolic changes in Hypericum perforatum after 14 days of cultivation was monitored. Nitrate deficiency suppressed growth of shoots but stimulated root growth while ammonium suppressed root growth: concomitant changes of ascorbic acid and glutathione supported these growth changes, e.g., unaltered level in roots under nitrate deficiency but depleted in ammonium treatment. Soluble proteins and water content were more suppressed by nitrate deficiency but total ROS, nitric oxide formation, and antioxidative enzyme activities (APX and SOD) indicate higher sensitivity of plants to ammonium. Though both extreme treatments (NO3- deficiency or ammonium) stimulated accumulation of total soluble phenols and affected PAL activity (in comparison with full or 1/4× nitrate dose), major phenols (chlorogenic acid and three flavonoids) were elevated mainly by NO3- deficiency. At the level of specific metabolites, NO3- deficiency had stimulatory impact on pseudohypericin (but not hypericin) content while hyperforin decreased. Expression of earlier putative gene of hypericin biosynthesis (hyp-1) showed rather partial correlation with pseudohypericin amount. Data indicate that depletion of NO3- is useful to obtain Hypericum plants with higher amount of health-positive secondary metabolites.
Zobrazit více v PubMed
Plant Cell. 1995 Jul;7(7):1085-1097 PubMed
Protoplasma. 2017 Nov;254(6):2143-2153 PubMed
Nitric Oxide. 2019 Feb 1;83:11-18 PubMed
Free Radic Biol Med. 1996;20(7):933-56 PubMed
Anal Biochem. 1976 May 7;72:248-54 PubMed
J Pharm Biomed Anal. 2018 Jun 5;155:82-90 PubMed
J Plant Physiol. 2014 Feb 15;171(3-4):260-8 PubMed
Plant Cell Physiol. 2005 Aug;46(8):1350-7 PubMed
Front Plant Sci. 2016 May 18;7:668 PubMed
Methods. 2001 Dec;25(4):402-8 PubMed
Nitric Oxide. 2006 Dec;15(4):351-8 PubMed
Food Chem. 2014 Jan 1;142:334-41 PubMed
Chemosphere. 2017 Aug;180:86-92 PubMed
Protoplasma. 2019 Jan;256(1):147-159 PubMed
Ann Bot. 2015 Sep;116(4):601-12 PubMed
Plant Physiol. 2004 Oct;136(2):3114-23; discussion 3001 PubMed
J Hazard Mater. 2015 Apr 9;286:334-42 PubMed
Plant Physiol Biochem. 2016 Nov;108:222-230 PubMed