Continual measurement of arterial dP/dtmax enables minimally invasive monitoring of left ventricular contractility in patients with acute heart failure
Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
MH CZ - DRO (Nemocnice Na Homolce - NNH, 00023884), IG150501
Ministerstvo Zdravotnictví Ceské Republiky - International
PubMed
31752966
PubMed Central
PMC6869259
DOI
10.1186/s13054-019-2654-8
PII: 10.1186/s13054-019-2654-8
Knihovny.cz E-resources
- Keywords
- Acute heart failure, Cardiac output, Contractility, Left ventricle, Stroke volume, Systemic vascular resistance, dP/dt,
- MeSH
- Echocardiography, Doppler methods MeSH
- Ventricular Function, Left physiology MeSH
- Myocardial Contraction physiology MeSH
- Middle Aged MeSH
- Humans MeSH
- Cardiac Output physiology MeSH
- Pilot Projects MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Heart Rate physiology MeSH
- Heart Failure diagnostic imaging physiopathology MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Continuous, reliable evaluation of left ventricular (LV) contractile function in patients with advanced heart failure requiring intensive care remains challenging. Continual monitoring of dP/dtmax from the arterial line has recently become available in hemodynamic monitoring. However, the relationship between arterial dP/dtmax and LV dP/dtmax remains unclear. This study aimed to determine the relationship between arterial dP/dtmax and LV dP/dtmax assessed using echocardiography in patients with acute heart failure. METHODS: Forty-eight patients (mean age 70.4 years [65% male]) with acute heart failure requiring intensive care and hemodynamic monitoring were recruited. Hemodynamic variables, including arterial dP/dtmax, were continually monitored using arterial line pressure waveform analysis. LV dP/dtmax was assessed using continuous-wave Doppler analysis of mitral regurgitation flow. RESULTS: Values from continual arterial dP/dtmax monitoring were significantly correlated with LV dP/dtmax assessed using echocardiography (r = 0.70 [95% confidence interval (CI) 0.51-0.82]; P < 0.0001). Linear regression analysis revealed that LV dP/dtmax = 1.25 × (arterial dP/dtmax) (P < 0.0001). Arterial dP/dtmax was also significantly correlated with stroke volume (SV) (r = 0.63; P < 0.0001) and cardiac output (CO) (r = 0.42; P = 0.0289). In contrast, arterial dP/dtmax was not correlated with SV variation, dynamic arterial elastance, heart rate, systemic vascular resistance (SVR), or mean arterial pressure. Markedly stronger agreement between arterial and LV dP/dtmax was observed in subgroups with higher SVR (N = 28; r = 0.91; P < 0.0001), lower CO (N = 26; r = 0.81; P < 0.0001), and lower SV (N = 25; r = 0.60; P = 0.0014). A weak correlation was observed in the subjects with lower SVR (N = 20; r = 0.61; P = 0.0004); in the subgroups with higher CO (N = 22) and higher SV (N = 23), no significant correlation was found. CONCLUSION: Our results suggest that in patients with acute heart failure requiring intensive care with an arterial line, continuous calculation of arterial dP/dtmax may be used for monitoring LV contractility, especially in those with higher SVR, lower CO, and lower SV, such as in patients experiencing cardiogenic shock. On the other hand, there was only a weak or no significant correlation in the subgroups with higher CO, higher SV, and lower SVR.
See more in PubMed
Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, Jaeschke R, Mebazaa A, Pinsky MR, Teboul JL, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40(12):1795–1815. doi: 10.1007/s00134-014-3525-z. PubMed DOI PMC
Dewilde WJ, Oirbans T, Verheugt FW, Kelder JC, De Smet BJ, Herrman JP, Adriaenssens T, Vrolix M, Heestermans AA, Vis MM, et al. Use of clopidogrel with or without aspirin in patients taking oral anticoagulant therapy and undergoing percutaneous coronary intervention: an open-label, randomised, controlled trial. Lancet. 2013;381(9872):1107–1115. doi: 10.1016/S0140-6736(12)62177-1. PubMed DOI
Suga H, Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res. 1974;35(1):117–126. doi: 10.1161/01.RES.35.1.117. PubMed DOI
Sagawa K. The end-systolic pressure-volume relation of the ventricle: definition, modifications and clinical use. Circulation. 1981;63(6):1223–1227. doi: 10.1161/01.CIR.63.6.1223. PubMed DOI
Wallace AG, Skinner NS, Jr, Mitchell JH. Hemodynamic determinants of the maximal rate of rise of left ventricular pressure. Am J Phys. 1963;205:30–36. doi: 10.1152/ajplegacy.1963.205.1.30. PubMed DOI
Bargiggia GS, Bertucci C, Recusani F, Raisaro A, de Servi S, Valdes-Cruz LM, Sahn DJ, Tronconi L. A new method for estimating left ventricular dP/dt by continuous wave Doppler-echocardiography. Validation studies at cardiac catheterization. Circulation. 1989;80(5):1287–1292. doi: 10.1161/01.CIR.80.5.1287. PubMed DOI
Chung N, Nishimura RA, Holmes DR, Jr, Tajik AJ. Measurement of left ventricular dp/dt by simultaneous Doppler echocardiography and cardiac catheterization. J Am Soc Echocardiogr. 1992;5(2):147–152. doi: 10.1016/S0894-7317(14)80544-0. PubMed DOI
Morimont P, Lambermont B, Desaive T, Janssen N, Chase G, D'Orio V. Arterial dP/dtmax accurately reflects left ventricular contractility during shock when adequate vascular filling is achieved. BMC Cardiovasc Disord. 2012;12:13. doi: 10.1186/1471-2261-12-13. PubMed DOI PMC
De Hert SG, Robert D, Cromheecke S, Michard F, Nijs J, Rodrigus IE. Evaluation of left ventricular function in anesthetized patients using femoral artery dP/dt (max) J Cardiothorac Vasc Anesth. 2006;20(3):325–330. doi: 10.1053/j.jvca.2005.11.006. PubMed DOI
Monge Garcia MI, Jian Z, Settels JJ, Hunley C, Cecconi M, Hatib F, Pinsky MR. Performance comparison of ventricular and arterial dP/dtmax for assessing left ventricular systolic function during different experimental loading and contractile conditions. Crit Care. 2018;22(1):325. doi: 10.1186/s13054-018-2260-1. PubMed DOI PMC
Tartiere JM, Logeart D, Beauvais F, Chavelas C, Kesri L, Tabet JY, Cohen-Solal A. Non-invasive radial pulse wave assessment for the evaluation of left ventricular systolic performance in heart failure. Eur J Heart Fail. 2007;9(5):477–483. doi: 10.1016/j.ejheart.2006.11.005. PubMed DOI
Mebazaa A, Tolppanen H, Mueller C, Lassus J, DiSomma S, Baksyte G, Cecconi M, Choi DJ, Cohen Solal A, Christ M, et al. Acute heart failure and cardiogenic shock: a multidisciplinary practical guidance. Intensive Care Med. 2016;42(2):147–163. doi: 10.1007/s00134-015-4041-5. PubMed DOI
Robotham JL, Takata M, Berman M, Harasawa Y. Ejection fraction revisited. Anesthesiology. 1991;74(1):172–183. doi: 10.1097/00000542-199101000-00026. PubMed DOI
Boissier F, Razazi K, Seemann A, Bedet A, Thille AW, de Prost N, Lim P, Brun-Buisson C, Mekontso Dessap A. Left ventricular systolic dysfunction during septic shock: the role of loading conditions. Intensive Care Med. 2017;43(5):633–642. doi: 10.1007/s00134-017-4698-z. PubMed DOI
Cikes M, Solomon SD. Beyond ejection fraction: an integrative approach for assessment of cardiac structure and function in heart failure. Eur Heart J. 2016;37(21):1642–1650. doi: 10.1093/eurheartj/ehv510. PubMed DOI
Burns AT, La Gerche A, D'Hooge J, MacIsaac AI, Prior DL. Left ventricular strain and strain rate: characterization of the effect of load in human subjects. Eur J Echocardiogr. 2010;11(3):283–289. doi: 10.1093/ejechocard/jep214. PubMed DOI
Nafati C, Gardette M, Leone M, Reydellet L, Blasco V, Lannelongue A, Sayagh F, Wiramus S, Antonini F, Albanese J, et al. Use of speckle-tracking strain in preload-dependent patients, need for cautious interpretation! Ann Intensive Care. 2018;8(1):29. doi: 10.1186/s13613-018-0376-8. PubMed DOI PMC
Scolletta S, Bodson L, Donadello K, Taccone FS, Devigili A, Vincent JL, De Backer D. Assessment of left ventricular function by pulse wave analysis in critically ill patients. Intensive Care Med. 2013;39(6):1025–1033. doi: 10.1007/s00134-013-2861-8. PubMed DOI
Kim JW, Bang JY, Park CS, Gwak M, Shin WJ, Hwang GS. Usefulness of the maximum rate of pressure rise in the central and peripheral arteries after weaning from cardiopulmonary bypass in pediatric congenital heart surgery: a retrospective analysis. Medicine (Baltimore) 2016;95(49):e5405. doi: 10.1097/MD.0000000000005405. PubMed DOI PMC
Vaquer S, Chemla D, Teboul JL, Ahmad U, Cipriani F, Oliva JC, Ochagavia A, Artigas A, Baigorri F, Monnet X. Influence of changes in ventricular systolic function and loading conditions on pulse contour analysis-derived femoral dP/dtmax. Ann Intensive Care. 2019;9(1):61. doi: 10.1186/s13613-019-0537-4. PubMed DOI PMC