Can Sub-zero Treatment at -75 °C Bring Any Benefits to Tools Manufacturing?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
VEGA 1/0264/17
Scientific Grant Agency of the Ministry of Education, science, research and sport of the Slovak Republic and the Slovak Academy of Sciences
PubMed
31766375
PubMed Central
PMC6926819
DOI
10.3390/ma12233827
PII: ma12233827
Knihovny.cz E-zdroje
- Klíčová slova
- fracture toughness, hardness, microstructure, sub-zero treatment at −75 °C, vanadis 6 steel,
- Publikační typ
- časopisecké články MeSH
: Vanadis 6 ledeburitic tool steel was subjected to sub-zero treatment at -75 °C for different durations, and for different subsequent tempering regimes. The impact of these treatments on the microstructure, hardness variations, and toughness characteristics of the steel was investigated. The obtained results infer that the retained austenite amount was reduced to one fourth by sub-zero treatment (SZT), and the population density of add-on carbides was increased by factor of three to seven, depending on the duration of SZT. Tempering always reduced the population density of these particles. A hardness increased by 30-60 HV10 was recorded after sub-zero treatment but tempering to the secondary hardness peak induced much more significant hardness decrease than what was established in conventionally quenched steel. The flexural strength was not negatively influenced by sub-zero treatment at -75 °C while the fracture toughness tests gave worse values of this quantity, except the case of steel tempered to the secondary hardness peak.
Zobrazit více v PubMed
Berns H., Broeckmann C. Fracture of Hot Formed Ledeburitic Chromium Steels. Eng. Fract. Mech. 1997;58:311–325. doi: 10.1016/S0013-7944(97)00118-5. DOI
Das D., Ray K.K. Structure-property correlation of cub-zero treated AISI D2 steel. Mater. Sci. Eng. A. 2012;541:45–60. doi: 10.1016/j.msea.2012.01.130. DOI
Amini K., Akhbarizadeh A., Javadpour S. Investigating the effect of the quench environment on the final microstructure and wear behaviour of 1.2080 tool steel after deep cryogenic heat treatment. Mater. Des. 2013;45:316–322. doi: 10.1016/j.matdes.2012.08.006. DOI
Das D., Ray K.K., Dutta A.K. Influence of temperature of sub-zero treatments on the wear behaviour of die steel. Wear. 2009;267:1361–1370. doi: 10.1016/j.wear.2008.11.029. DOI
Surberg C.H., Stratton P.F., Lingenhoele K. The effect of some heat treatment parameters on the dimensional stability of AISI D2. Cryogenics. 2008;48:42–47. doi: 10.1016/j.cryogenics.2007.10.002. DOI
Akhbarizadeh A., Javadpour S., Amini K., Yaghtin A.H. Investigating the effect of ball milling during the deep cryogenic heat treatment of the 1.2080 tool steel. Vacuum. 2013;90:70–74. doi: 10.1016/j.vacuum.2012.09.023. DOI
Jurči P., Dománková M., Čaplovič L., Ptačinová J., Sobotová J., Salabová P., Prikner P., Šuštaršič B., Jenko D. Microstructure and hardness of sub-zero treated and no tempered P/M Vanadis 6 ledeburitic tool steel. Vacuum. 2015;111:92–101. doi: 10.1016/j.vacuum.2014.10.004. DOI
Amini K., Akhbarizadeh A., Javadpour S. Investigating the effect of holding duration on the microstructure of 1.2080 tool steel during the deep cryogenic treatment. Vacuum. 2012;86:1534–1540. doi: 10.1016/j.vacuum.2012.02.013. DOI
Tyshchenko A.I., Theisen W., Oppenkowski A., Siebert S., Razumov O.N., Skoblik A.P., Sirosh V.A., Petrov J.N., Gavriljuk V.G. Low-temperature martensitic transformation and deep cryogenic treatment of a tool steel. Mater. Sci. Eng. A. 2010;527:7027–7039. doi: 10.1016/j.msea.2010.07.056. DOI
Villa M., Pantleon K., Somers M.A.J. Evolution of compressive strains in retained austenite during sub-zero Celsius martensite formation and tempering. Acta Mater. 2014;65:383–392. doi: 10.1016/j.actamat.2013.11.007. DOI
Jurči P. Sub-Zero Treatment of Cold Work Tool Steels–Metallurgical Background and the Effect on Microstructure and Properties. HTM J. Heat Treat. Mater. 2017;72:62–68. doi: 10.3139/105.110301. DOI
Jurči P., Dománková M., Hudáková M., Ptačinová J., Pašák M., Palček P. Characterization of microstructure and tempering response of conventionally quenched, short- and long-time sub-zero treated PM Vanadis 6 ledeburitic tool steel. Mater. Charact. 2017;134:398–415. doi: 10.1016/j.matchar.2017.10.029. DOI
Stratton P.F. Optimizing nano-carbide precipitation in tool steels. Mater. Sci. Eng. A. 2007;449–451:809–812. doi: 10.1016/j.msea.2006.01.162. DOI
Van Genderen M.J., Boettger A., Cernik R.J., Mittemeijer E.J. Early Stages of Decomposition in Iron-Carbon and Iron-Nitrogen Martensites: Diffraction Analysis Using Synchrotron Radiation. Metall. Trans. A. 1993;24:1965–1973. doi: 10.1007/BF02666331. DOI
Preciado M., Pellizzari M. Influence of deep cryogenic treatment on the thermal decomposition of Fe-C martensite. J. Mater. Sci. 2014;49:8183–8191. doi: 10.1007/s10853-014-8527-2. DOI
Collins D.N., Dormer J. Deep Cryogenic Treatment of a D2 Cold-work Tool Steel. Heat Treat. Met. 1997;3:71–74.
Wierszyllowski I. The Influence of Post-quenching Deep Cryogenic Treatment on Tempering Processes and Properties of D2 Tool Steel. Studies of Structure, XRD, Dilatometry, Hardness and Fracture Toughness. Defect Diffus. Forum. 2006;258–260:415–420.
Rhyim Y.M., Han S.H., Na Y.S., Lee J.H. Effect of Deep Cryogenic Treatment on Carbide Precipitation and Mechanical Properties of Tool Steel. Solid State Phenom. 2006;118:9–14. doi: 10.4028/www.scientific.net/SSP.118.9. DOI
Das D., Sarkar R., Dutta A.K., Ray K.K. Influence of sub-zero treatments on fracture toughness of AISI D2 steel. Mater. Sci. Eng. A. 2010;528:589–603. doi: 10.1016/j.msea.2010.09.057. DOI
Sobotová J., Jurči P., Dlouhý I. The effect of sub-zero treatment on microstructure, fracture toughness, and wear resistance of Vanadis 6 tool steel. Mater. Sci. Eng. A. 2016;652:192–204. doi: 10.1016/j.msea.2015.11.078. DOI
Ptačinová J., Sedlická V., Hudáková M., Dlouhý I., Jurči P. Microstructure Toughness relationships in sub-zero treated and tempered Vanadis 6 steel compared to conventional treatmen. Mater. Sci. Eng. A. 2017;702:241–258. doi: 10.1016/j.msea.2017.07.007. DOI
Jurči P., Ďurica J., Dlouhý I., Horník J., Planieta R., Kralovič D. Application of −140 °C Sub-Zero Treatment For Cr-V Ledeburitic Steel Service Performance Improvement. Metall. Mater. Trans. A. 2019;50:2413–2434. doi: 10.1007/s11661-019-05180-6. DOI
Kumar S., Nahraj M., Bongale A., Khedkar N.K. Effect of deep cryogenic treatment on the mechanical properties of AISI D3 tool steel. Int. J. Mater. Eng. Innov. 2019;10:98–113. doi: 10.1504/IJMATEI.2019.099789. DOI
Reitz W., Pendray J. Cryoprocessing of Materials: A Review of Current Status. Mater. Manuf. Process. 2001;16:829–840. doi: 10.1081/AMP-100108702. DOI
Gavriljuk V.G., Theisen W., Sirosh V.V., Polshin E.V., Kortmann A., Mogilny G.S., Petrov Y.N., Tarusin Y.V. Low-temperature martensitic transformation in tool steels in relation to their deep cryogenic treatment. Acta Mater. 2013;61:1705–1715. doi: 10.1016/j.actamat.2012.11.045. DOI
Ďurica J., Ptačinová J., Dománková M., Čaplovič L., Čaplovičová M., Hrušovská L., Malovcová V., Jurči P. Changes in microstructure of ledeburitic tool steel due to vacuum austenitizing and quenching, sub-zero treatments at −140°C and tempering, Vacuum 2019. 2019 doi: 10.1016/j.vacuum.2019.108977. DOI
Zurecki Z. Cryogenic Quenching of Steel Revisited; Proceedings of the 23rd Heat Treating Society Conference; Pittsburgh, PA, USA. 26–28 September 2005; pp. 106–114.
ASTM E975-13 . Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation. Volume 3.01 ASTM Book of Standards; West Conshohocken, PA, USA: 2004.
CSN EN ISO 6507-1 . Metallic Materials - Vickers Hardness Test - Part 1: Test Method. Office for Technical Standardization, Metrology and State Testing; Prague, Czech Republic: 2018.
Jurči P., Dlouhý I. Fracture Behaviour of P/M Cr-V Ledeburitic Steel with Different Surface Roughness. Mater. Eng. 2011;18:36–43.
CSN EN ISO . Hardmetals – Determination of Transverse Rupture Strength. Office for Technical Standardization, Metrology and State Testing; Prague, Czech Republic: 2009.
ISO 12135 Metallic Materials – Determination of Plane Strain Fracture Toughness. [(accessed on 1 November 2016)];2010 Available online: https://www.iso.org/standard/60891.html.
Putatunda S.K. Fracture toughness of a high carbon and high silicon steel. Mater. Sci. Eng. A. 2001;297:31–43. doi: 10.1016/S0921-5093(00)01272-7. DOI
Casellas D., Caro J., Molas S., Prado J.M., Valls I. Fracture toughness of carbides in tool steels evaluated by nanoindentation. Acta Mater. 2007;55:4277–4286. doi: 10.1016/j.actamat.2007.03.028. DOI
Fukaura K., Yokoyama Y., Yokoi D., Tsuji N., Ono K. Fatigue of cold-work tool steels: Effect of heat treatment and carbide morphology on fatigue crack formation, life, and fracture surface observations. Metall. Mater. Trans. A. 2004;35:1289–1300. doi: 10.1007/s11661-004-0303-5. DOI
Cheng L., Brakman C.M., Korevaar B.M., Mittemeijer E.J. The tempering of iron-carbon martensite; dilatometric and calorimetric analysis. Metall. Trans. A. 1988;19:2415–2426. doi: 10.1007/BF02645469. DOI