Effect of Cryogenic Treatments on Hardness, Fracture Toughness, and Wear Properties of Vanadis 6 Tool Steel

. 2024 Apr 07 ; 17 (7) : . [epub] 20240407

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38612201

Grantová podpora
1/0112/20 Scientific Grant Agency of the Ministry of Education, science, research and sport of the Slovak Republic and the Slovak Academy of Sciences

The ability of cryogenic treatment to improve tool steel performance is well established; however, the selection of optimal heat treatment is pivotal for cost reduction and extended tool life. This investigation delves into the influence of distinct cryogenic and tempering treatments on the hardness, fracture toughness, and tribological properties of Vanadis 6 tool steel. Emphasis was given to comprehending wear mechanisms, wear mode identification, volume loss estimation, and detailed characterization of worn surfaces through scanning electron microscopy coupled with energy dispersive spectroscopy and confocal microscopy. The findings reveal an 8-9% increase and a 3% decrease in hardness with cryogenic treatment compared to conventional treatment when tempered at 170 °C and 530 °C, respectively. Cryotreated specimens exhibit an average of 15% improved fracture toughness after tempering at 530 °C compared to conventional treatment. Notably, cryogenic treatment at -140 °C emerges as the optimum temperature for enhanced wear performance in both low- and high-temperature tempering scenarios. The identified wear mechanisms range from tribo-oxidative at lower contacting conditions to severe delaminative wear at intense contacting conditions. These results align with microstructural features, emphasizing the optimal combination of reduced retained austenite and the highest carbide population density observed in -140 °C cryogenically treated steel.

Zobrazit více v PubMed

Moscoso M.F.C., Ramos F.D., De Lima Lessa C.R., Cunha P.H.C.P., Toniolo J.C., Lemos G.V.B. Effects of Cooling Parameter and Cryogenic Treatment on Microstructure and Fracture Toughness of AISI D2 Tool Steel. J. Mater. Eng. Perform. 2020;29:7929–7939. doi: 10.1007/s11665-020-05285-9. DOI

Gobbi S.J., Gobbi V.J., Reinke G., Muterlle P.V., Rosa D.M. Ultra-Low-Temperature Process Effects on Microscale Abrasion of Tool Steel AISI D2. Mater. Sci. Technol. 2019;35:1355–1364. doi: 10.1080/02670836.2019.1624018. DOI

Nanesa H.G., Touazine H., Jahazi M. Influence of Cryogenic Process Parameters on Microstructure and Hardness Evolution of AISI D2 Tool Steel. Int. J. Adv. Manuf. Technol. 2016;85:881–890. doi: 10.1007/s00170-015-7980-7. DOI

Li J., Zhang X., Bu H., Qi H., Zuo P., Li S., Li M. Effects of Deep Cryogenic Treatment on the Microstructure Evolution, Mechanical and Thermal Fatigue Properties of H13 Hot Work Die Steel. J. Mater. Res. Technol. 2023;27:8100–8118. doi: 10.1016/j.jmrt.2023.11.236. DOI

Gecu R. Combined Effects of Cryogenic Treatment and Tempering on Microstructural and Tribological Features of AISI H13 Steel. Mater. Chem. Phys. 2022;292:126802. doi: 10.1016/j.matchemphys.2022.126802. DOI

Xu G., Huang P., Feng Z., Wei Z., Zu G. Effect of Deep Cryogenic Time on Martensite Multi-Level Microstructures and Mechanical Properties in AISI M35 High-Speed Steel. Materials. 2022;15:6618. doi: 10.3390/ma15196618. PubMed DOI PMC

Parcianello C.T., Fantineli D.G., Rosendo T.S., Reguly A., Tier M.A.D. Influence of the Heat Treatment on the Mechanical and Tribological Properties of Cryogenically Treated AISI M2 Steel. J. Mater. Res. Technol. 2023;26:6462–6475. doi: 10.1016/j.jmrt.2023.08.309. DOI

Jovičević-Klug P., Jovičević-Klug M., Thormählen L., McCord J., Rohwerder M., Godec M., Podgornik B. Austenite Reversion Suppression with Deep Cryogenic Treatment: A Novel Pathway towards 3rd Generation Advanced High-Strength Steels. Mater. Sci. Eng. A. 2023;873:145033. doi: 10.1016/j.msea.2023.145033. DOI

Yang Z., Liu Z., Liang J., Yang Z., Sheng G. Elucidating the Role of Secondary Cryogenic Treatment on Mechanical Properties of a Martensitic Ultra-High Strength Stainless Steel. Mater. Charact. 2021;178:111277. doi: 10.1016/j.matchar.2021.111277. DOI

Dhokey N.B., Thakur C., Ghosh P. Influence of Intermediate Cryogenic Treatment on the Microstructural Transformation and Shift in Wear Mechanism in AISI D2 Steel. Tribol. Trans. 2021;64:91–100. doi: 10.1080/10402004.2020.1804652. DOI

Ďurica J., Ptačinová J., Dománková M., Čaplovič L., Čaplovičová M., Hrušovská L., Malovcová V., Jurči P. Changes in Microstructure of Ledeburitic Tool Steel Due to Vacuum Austenitizing and Quenching, Sub-Zero Treatments at −140 °C and Tempering. Vacuum. 2019;170:108977. doi: 10.1016/j.vacuum.2019.108977. DOI

Nanesa H.G., Jahazi M., Naraghi R. Martensitic Transformation in AISI D2 Tool Steel during Continuous Cooling to 173 K. J. Mater. Sci. 2015;50:5758–5768. doi: 10.1007/s10853-015-9123-9. DOI

Das D., Dutta A.K., Ray K.K. On the Enhancement of Wear Resistance of Tool Steels by Cryogenic Treatment. Philos. Mag. Lett. 2008;88:801–811. doi: 10.1080/09500830802380788. DOI

Das D., Dutta A.K., Toppo V., Ray K.K. Effect of Deep Cryogenic Treatment on the Carbide Precipitation and Tribological Behavior of D2 Steel. Mater. Manuf. Process. 2007;22:474–480. doi: 10.1080/10426910701235934. DOI

Das D., Dutta A.K., Ray K.K. Influence of Varied Cryotreatment on the Wear Behavior of AISI D2 Steel. Wear. 2009;266:297–309. doi: 10.1016/j.wear.2008.07.001. DOI

Das D., Ray K.K., Dutta A.K. Influence of temperature of sub-zero treatments on the wear behaviour of die steel. Wear. 2009;267:1361–1370. doi: 10.1016/j.wear.2008.11.029. DOI

Amini K., Akhbarizadeh A., Javadpour S. Effect of Deep Cryogenic Treatment on the Formation of Nano-Sized Carbides and the Wear Behavior of D2 Tool Steel. Int. J. Miner. Metall. Mater. 2012;19:795–799. doi: 10.1007/s12613-012-0630-2. DOI

Korade D.N., Ramana K.V., Jagtap K.R., Dhokey N.B. Effect of Deep Cryogenic Treatment on Tribological Behaviour of D2 Tool Steel-An Experimental Investigation. Mater. Today Proc. 2017;4:7665–7673. doi: 10.1016/j.matpr.2017.07.100. DOI

Schulz A., Cui C., Steinbacher M., Ümit T., Wunde M., Jung I., Acar S., Nürnberger F., Gerstein G., Herbst S., et al. Effects of Cryogenic Treatment on the Microstructure and Mechanical Properties of High-Alloyed Tool Steels: Auswirkungen Der Kryobehandlung Auf Die Mikrostruktur Und Die Mechanischen Eigenschaften Hochlegierter Werkzeugstähle. HTM J. Heat Treat. Mater. 2020;75:73–93. doi: 10.3139/105.110422. DOI

Jurči P., Dománková M., Hudáková M., Ptačinová J., Pašák M., Palček P. Characterization of Microstructure and Tempering Response of Conventionally Quenched, Short- and Long-Time Sub-Zero Treated PM Vanadis 6 Ledeburitic Tool Steel. Mater. Charact. 2017;134:398–415. doi: 10.1016/j.matchar.2017.10.029. DOI

Kusý M., Rízeková-Trnková L., Krajčovič J., Dlouhý I., Jurči P. Can Sub-Zero Treatment at −75 °C Bring Any Benefits to Tools Manufacturing? Materials. 2019;12:3827. doi: 10.3390/ma12233827. PubMed DOI PMC

Jurči P., Ďurica J., Dlouhý I., Horník J., Planieta R., Kralovič D. Application of −140 °C Sub-Zero Treatment for Cr-V Ledeburitic Steel Service Performance Improvement. Metall. Mater. Trans. A. 2019;50:2413–2434. doi: 10.1007/s11661-019-05180-6. DOI

Metallic Materials–Determination of Plane Strain Fracture Toughness. International Organization for Standardization; Geneva, Switzerland: 2010.

US-ASTM . ASTM G99. Test Method for Wear Testing with a Pin-on-Disk Apparatus. ASTM International; West Conshohocken, PA, USA: 2017.

Achuthamenon Sylajakumari P., Ramakrishnasamy R., Palaniappan G. Taguchi Grey Relational Analysis for Multi-Response Optimization of Wear in Co-Continuous Composite. Materials. 2018;11:1743. doi: 10.3390/ma11091743. PubMed DOI PMC

Das D., Ray K.K. On the Mechanism of Wear Resistance of Tool Steels by Deep Cryogenic Treatment. Philos. Mag. Lett. 2012;92:295–303. doi: 10.1080/09500839.2012.669052. DOI

Das D., Ray K.K. Structure–Property Correlation of Sub-Zero Treated AISI D2 Steel. Mater. Sci. Eng. A. 2012;541:45–60. doi: 10.1016/j.msea.2012.01.130. DOI

Cardoso P.H.S., Israel C.L., da Silva M.B., Klein G.A., Soccol L. Effects of Deep Cryogenic Treatment on Microstructure, Impact Toughness and Wear Resistance of an AISI D6 Tool Steel. Wear. 2020;456–457:203382. doi: 10.1016/j.wear.2020.203382. DOI

Podgornik B., Paulin I., Zajec B., Jacobson S., Leskovšek V. Deep Cryogenic Treatment of Tool Steels. J. Mater. Process. Technol. 2016;229:398–406. doi: 10.1016/j.jmatprotec.2015.09.045. DOI

Jovičević-Klug P., Podgornik B. Comparative Study of Conventional and Deep Cryogenic Treatment of AISI M3:2 (EN 1.3395) High-Speed Steel. J. Mater. Res. Technol. 2020;9:13118–13127. doi: 10.1016/j.jmrt.2020.09.071. DOI

Akhbarizadeh A., Amini K., Javadpour S. Effects of Applying an External Magnetic Field during the Deep Cryogenic Heat Treatment on the Corrosion Resistance and Wear Behavior of 1.2080 Tool Steel. Mater. Des. 2012;41:114–123. doi: 10.1016/j.matdes.2012.03.045. DOI

Akhbarizadeh A., Javadpour S., Amini K. Investigating the Effect of Electric Current Flow on the Wear Behavior of 1.2080 Tool Steel during the Deep Cryogenic Heat Treatment. Mater. Des. 2013;45:103–109. doi: 10.1016/j.matdes.2012.08.012. DOI

Akhbarizadeh A., Golozar M.A., Shafeie A., Kholghy M. Effects of Austenizing Time on Wear Behavior of D6 Tool Steel after Deep Cryogenic Treatment. J. Iron Steel Res. Int. 2009;16:29–32. doi: 10.1016/S1006-706X(10)60023-4. DOI

Dhokey N.B., Nirbhavne S. Dry Sliding Wear of Cryotreated Multiple Tempered D-3 Tool Steel. J. Mater. Process. Technol. 2009;209:1484–1490. doi: 10.1016/j.jmatprotec.2008.03.069. DOI

Arsič D., Lazič V., Mitrovič S., Džunič D., Aleksandrovič S., Djordjevič M., Nedeljkovič B. Tribological behavior of four types of filler metals for hard facing under dry conditions. Ind. Lubr. Tribol. 2016;68:729–736. doi: 10.1108/ILT-10-2015-0156. DOI

Jurči P., Dlouhý I. Cryogenic Treatment of Martensitic Steels: Microstructural Fundamentals and Implications for Mechanical Properties and Wear and Corrosion Performance. Materials. 2024;17:548. doi: 10.3390/ma17030548. PubMed DOI PMC

Meng F., Tagashira K., Azuma R., Sohma H. Role of Eta-carbide Precipitation’s in the Wear Resistance Improvements of Fe-12Cr-Mo-V-1.4C Tool Steel by Cryogenic Treatment. ISIJ Int. 1994;34:205–210. doi: 10.2355/isijinternational.34.205. DOI

Yarasu V., Janka L., Jurči P. Dry Sliding Wear Behaviour of Sub-Zero Processed Cr–V Ledeburitic Steel Vanadis 6 against Three Counterpart Types. Int. J. Mater. Res. 2020;111:894–907. doi: 10.3139/146.111962. DOI

Leskovšek V., Kalin M., Vižintin J. Influence of deep-cryogenic treatment on wear resistance of vacuum heat-treated HSS. Vacuum. 2006;80:507–518. doi: 10.1016/j.vacuum.2005.08.023. DOI

García-León R.A., Martínez-Trinidad J., Zepeda-Bautista R., Campos-Silva I., Guevara-Morales A., Martínez-Londoño J., Barbosa-Saldaña J. Dry Sliding Wear Test on Borided AISI 316L Stainless Steel under Ball-on-Flat Configuration: A Statistical Analysis. Tribol. Int. 2021;157:106885. doi: 10.1016/j.triboint.2021.106885. DOI

García-León R.A., Martínez-Trinidad J., Campos-Silva I., Figueroa-López U., Guevara-Morales A. Wear Maps of Borided AISI 316L Steel under Ball-on-Flat Dry Sliding Conditions. Mater. Lett. 2021;282:128842. doi: 10.1016/j.matlet.2020.128842. DOI

Wang S.Q., Wei M.X., Zhao Y.T. Effects of the Tribo-Oxide and Matrix on Dry Sliding Wear Characteristics and Mechanisms of a Cast Steel. Wear. 2010;269:424–434. doi: 10.1016/j.wear.2010.04.028. DOI

Davis J.R. Surface Hardening of Steels: Understanding the Basics. ASM International; West Conshohocken, PA, USA: 2002.

Das D., Dutta A.K., Ray K.K. Inconsistent wear behaviour of cryotreated tool steels: Role of mode and mechanism. Mater. Sci. Technol. 2009;25:1249–1257. doi: 10.1179/174328408X374685. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...