Cryogenic Treatment of Martensitic Steels: Microstructural Fundamentals and Implications for Mechanical Properties and Wear and Corrosion Performance

. 2024 Jan 23 ; 17 (3) : . [epub] 20240123

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38591379

Conventional heat treatment is not capable of converting a sufficient amount of retained austenite into martensite in high-carbon or high-carbon and high-alloyed iron alloys. Cryogenic treatment induces the following alterations in the microstructures: (i) a considerable reduction in the retained austenite amount, (ii) formation of refined martensite coupled with an increased number of lattice defects, such as dislocations and twins, (iii) changes in the precipitation kinetics of nano-sized transient carbides during tempering, and (iv) an increase in the number of small globular carbides. These microstructural alterations are reflected in mechanical property improvements and better dimensional stability. A common consequence of cryogenic treatment is a significant increase in the wear resistance of steels. The current review deals with all of the mentioned microstructural changes as well as the variations in strength, toughness, wear performance, and corrosion resistance for a variety of iron alloys, such as carburising steels, hot work tool steels, bearing and eutectoid steels, and high-carbon and high-alloyed ledeburitic cold work tool steels.

Zobrazit více v PubMed

Reitz W., Pendray J. Cryoprocessing of Materials: A Review of Current Status. Mater. Manuf. Proc. 2001;16:829–840. doi: 10.1081/AMP-100108702. DOI

Senthilkumar D., Rajendran I. A research review on deep cryogenic treatment of steels. Int. J. Mater. Struct. Integr. 2014;8:169–184. doi: 10.1504/IJMSI.2014.064784. DOI

Carlson E.A. ASM Handbook. 10th ed. Volume 4. ASM International; Metals Park, OH, USA: 1990. Cold treating and cryogenic treatment of steel; pp. 203–206. Heat Treating.

Ray K.K., Das D. Improved wear resistance of steels by cryotreatment: The current state of understanding. Mater. Sci. Technol. 2017;33:340–354. doi: 10.1080/02670836.2016.1206292. DOI

Akincioğlu S., Gökkaya H., Uygur I. A review of cryogenic treatment on cutting tools. Int. J. Adv. Manuf. Technol. 2015;78:1609–1627. doi: 10.1007/s00170-014-6755-x. DOI

Sweeney T.P. Deep cryogenics: The great cold debate. Heat Treat. 1986;2:28–33.

Albert M. Cutting tools in the deep freeze. Mod. Mach. Shop. 1992;64:54–61.

[(accessed on 20 May 2022)]. Available online: http://www.victor-aviation.com/Cryogenic_Processing_Technology.php.

With CRYOFLEX® Freezers from Linde. Linde AG; Dublin, Ireland: 2017. Freezing to Perfection.

Yan X.G., Li D.Y. Effects of the sub-zero treatment condition on microstructure, mechanical behavior and wear resistance of W9Mo3Cr4V high speed steel. Wear. 2013;302:854–862. doi: 10.1016/j.wear.2012.12.037. DOI

Kumar S., Nagraj M., Bongale A., Khedkar N. Deep Cryogenic Treatment of AISI M2 Tool Steel and Optimisation of Its Wear Characteristics Using Taguchi’s Approach. Arab. J. Sci. Eng. 2018;43:4917–4929. doi: 10.1007/s13369-018-3242-y. DOI

Das D., Dutta A.K., Ray K.K. Sub-zero treatments of AISI D2 steel: Part I. Microstructure and hardness. Mater. Sci. Eng. 2010;A527:2182–2193. doi: 10.1016/j.msea.2009.10.070. DOI

Thornton R., Slatter T., Ghadbeigi H. Effects of deep cryogenic treatment on the dry sliding wear performance of ferrous alloys. Wear. 2013;305:177–191. doi: 10.1016/j.wear.2013.06.005. DOI

Akhbarizadeh A., Amini K., Javadpour S. Effect of simultaneous magnetic field and deep cryogenic heat treatment on the microstructure of 1.2080 tool steel. Mater. Des. 2012;35:484–490. doi: 10.1016/j.matdes.2011.09.015. DOI

Kusy M., Rizekova-Trnkova L., Krajcovic J., Dlouhy I., Jurči P. Can Sub-Zero Treatment at -75 degrees C Bring Any Benefits to Tools Manufacturing? Materials. 2019;12:3827. doi: 10.3390/ma12233827. PubMed DOI PMC

Idayan A., Gnanavelbabu A., Rajkumar K. Influence of Deep Cryogenic Treatment on the Mechanical Properties of AISI 440C Bearing Steel. Procedia Eng. 2014;97:1683–1691. doi: 10.1016/j.proeng.2014.12.319. DOI

Li S., Yuan X., Jiang W., Sun H., Li J., Zhao K., Yang M. Effects of heat treatment influencing factors on microstructure and mechanical properties of a low-carbon martensitic stainless bearing steel. Mater. Sci. Eng. 2014;A605:229–235. doi: 10.1016/j.msea.2014.03.061. DOI

Bensely A., Prabhakaran A., Mohan Lal D., Nagarajan G. Enhancing the wear resistance of case carburized steel (En 353) by cryogenic treatment. Cryogenics. 2006;45:747–754. doi: 10.1016/j.cryogenics.2005.10.004. DOI

Shinde T. Influence of carbide particle size on the wear performance of cryogenically treated H13 die steel. Surf. Eng. 2020;37:1206–1214. doi: 10.1080/02670844.2019.1701858. DOI

Lu X.H., Li W., Wang C.L., Zhao H.S., Jin X.J. Effects of Sub-zero Celsius Treatment and Tempering on the Stability of Retained Austenite in Bearing Steel. Acta Metall. Sin. (Engl. Lett.) 2015;28:787–792. doi: 10.1007/s40195-015-0264-2. DOI

Ďurica J., Ptačinová J., Dománková M., Čaplovič L., Čaplovičová M., Hrušovská L., Malovcová V., Jurči P. Changes in microstructure of ledeburitic tool steel due to vacuum austenitizing and quenching, sub-zero treatments at −140 °C and tempering. Vacuum. 2019;170:108977. doi: 10.1016/j.vacuum.2019.108977. DOI

Katoch S., Singh V., Sehgal R. Mechanical Properties and Microstructure Evaluation of Differently Cryogenically Treated AISI H11 Steel. Int. J. Steel Struct. 2019;19:1381–1392. doi: 10.1007/s13296-019-00216-4. DOI

Katoch S., Singh V., Sehgal R. Characterisation of microstructure and mechanical properties of differently cryogenically treated hot die steel AISI-H11. Int. J. Mater. Eng. Innov. 2016;7:285–303. doi: 10.1504/IJMATEI.2016.084636. DOI

Sri Siva S., Shunmuga Priyan M. Residual Stress and Wear Studies of Deep Cryogenically Treated SAE 52100 Bearing Steel. Adv. Mater. Proc. 2019;4:48–54. doi: 10.5185/amp.2019.1430. DOI

Amini K., Akhbarizadeh A., Javadpour S. Investigating the effect of the quench environment on the final microstructure and wear behaviour of 1.2080 tool steel after deep cryogenic heat treatment. Mater. Des. 2013;45:316–322. doi: 10.1016/j.matdes.2012.08.006. DOI

Das D., Dutta A.K., Toppo V., Ray K.K. Effect of deep cryogenic treatment on the carbide precipitation and tribological behavior of D2 steel. Mater. Manuf. Process. 2007;22:474–480. doi: 10.1080/10426910701235934. DOI

Das D., Dutta A.K., Ray K.K. On the enhancement of wear resistance of tool steels by cryogenic treatment. Philos. Mag. Lett. 2008;88:801–811. doi: 10.1080/09500830802380788. DOI

Sobotová J., Jurči P., Dlouhý I. The effect of sub-zero treatment on microstructure, fracture toughness, and wear resistance of Vanadis 6 tool steel. Mater. Sci. Eng. 2016;A652:192–204. doi: 10.1016/j.msea.2015.11.078. DOI

Das D., Dutta A.K., Ray K.K. Optimization of the duration of cryogenic processing to maximize wear resistance of AISI D2 steel. Cryogenics. 2009;49:176–184. doi: 10.1016/j.cryogenics.2009.01.002. DOI

Jurči P., Dománková M., Čaplovič L., Ptačinová J., Sobotová J., Salabová P., Prikner O., Šuštaršič B., Jenko D. Microstructure and hardness of sub-zero treated and no tempered P/M Vanadis 6 ledeburitic tool steel. Vacuum. 2015;111:92–101. doi: 10.1016/j.vacuum.2014.10.004. DOI

Qiao X., Han L., Zhang W., Gu J. Thermal Stability of Retained Austenite in High-carbon Steels during Cryogenic and Tempering Treatments. ISIJ Int. 2016;56:140–147. doi: 10.2355/isijinternational.ISIJINT-2015-248. DOI

Berns H. Restaustenit in ledeburitischen Chromstählen und seine Umwandlung durch Kaltumformen, Tiefkühlen und Anlassen. HTM J. Heat Treatm. Mater. 1974;29:236–247. doi: 10.1515/htm-1974-290402. DOI

Stratton P., Graf M. The effect of deep cold induced nano-carbides on the wear of case hardened components. Cryogenics. 2009;49:346–349. doi: 10.1016/j.cryogenics.2009.03.007. DOI

Zurecki Z. Cryogenic Quenching of Steel Revisited. In: Herring D., Hill R., editors. Proceedings of the 23rd Heat Treating Society Conference; Pittsburgh, PA, USA. 25–28 September 2005; Metals Park, OH, USA: ASM International; 2005. pp. 106–114.

Ptačinová J., Ďurica J., Jurči P., Kusý M. Influence of sub-zero treatment in liquid helium and tempering on the microstructure of tool steel Vanadis 6; Proceedings of the 28th International Conference on Metallurgy and Materials METAL 2019; Brno, Czech Republic. 22–24 May 2019; Greensboro, NC, USA: Tanger Ltd.; 2019. pp. 569–574.

Jurči P., Bartkowska A., Hudáková M., Dománková M., Čaplovičová M., Bartkowski D. Effect of Sub-zero Treatments and Tempering on Corrosion Behaviour of Vanadis 6 tool steel. Materials. 2021;14:3759. doi: 10.3390/ma14133759. PubMed DOI PMC

Yugandhar Y., Krishnan P.K., Bhaskar Rao C.V., Kalidas R. Cryogenic Treatment and it’s Effect on Tool Steel. In: Fredriksson J.G., Johansson M., Kotik O., Thuvander F., editors. Proceedings of the 6th International Tooling Conference; Karlstad, Sweden. 10–13 September 2002; pp. 671–684.

Stratton P.F. Optimising nano-carbide precipitation in tool steels. Mater. Sci. Eng. A. 2007;449–451:809–812. doi: 10.1016/j.msea.2006.01.162. DOI

Sekar K.S., Murugesan S.N. Enhancement of Wear Resistance of D-3 Piercing Punches by Applying Cryogenic Treatment: Field and Laboratory Investigations. Trans. FAMENA. 2018;XLII-3:71–86. doi: 10.21278/TOF.42305. DOI

Arslan Y., Özdemir A. Punch structure, punch wear and cut profiles of AISI 304 stainless steel sheet blanks manufactured using cryogenically treated AISI D3 tool steel punches. Int. J. Adv. Manuf. Technol. 2016;87:587–599. doi: 10.1007/s00170-016-8515-6. DOI

Stratton P.F. Process optimisation for deep cold treatment of tool steels. In: Smoljan B., Jager H., Leskovsek V., editors. Proceedings of the 1st International Conference on Heat Treatment and Surface Engineering of Tools and Dies; Pula, Croatia. 8–11 June 2005; pp. 11–19.

Singla A.K., Singh J., Sharma V.S. Processing of materials at cryogenic temperature and its implications in manufacturing: A review. Mater. Manuf. Proc. 2018;33:1603–1640. doi: 10.1080/10426914.2018.1424908. DOI

Cohen M. Retained Austenite. Trans. ASM. 1949;41:35–94.

Gordon P., Cohen M. The Transformation of Retained Austenite in High Speed Steel at Sub-Atmospheric Temperatures. Trans. ASM. 1942;30:569–587.

Gunes I., Cicek A., Aslantas K., Kara F. Effect of Deep Cryogenic Treatment on Wear Resistance of AISI 52100 Bearing Steel. Trans. Indian Inst. Met. 2014;67:909–917. doi: 10.1007/s12666-014-0417-4. DOI

Amini K., Araghi A., Akhbarizadeh A. Effect of Deep Cryogenic Heat Treatment on the Wear Behavior of Carburized DIN 1.7131 Grade Steel. Acta Metall. Sin. (Engl. Lett.) 2015;28:348–353. doi: 10.1007/s40195-015-0204-1. DOI

Bensely A., Senthilkumar D., Mohan Lal D., Nagarajan G., Rajadurai A. Effect of cryogenic treatment on tensile behaviour of case carburized steel-815M17. Mater. Charact. 2007;58:485–491. doi: 10.1016/j.matchar.2006.06.019. DOI

Cicek A., Kara F., Kıvak T., Ekici E., Uygur I. Effects of Deep Cryogenic Treatment on the Wear Resistance and Mechanical Properties of AISI H13 Hot-Work Tool Steel. J. Mater. Eng. Perform. 2015;24:4431–4439. doi: 10.1007/s11665-015-1712-x. DOI

Bhavar V., Khot S., Kattire P., Mehta M., Singh R.K.P. Effect of Deep Cryogenic Treatment (DCT) on AISI H13 Tool Steel; Proceedings of the 28th ASM Heat Treating Society Conference; Detroit, MI, USA. 20–22 October 2015; pp. 383–389.

Molinari A., Pellizzari M., Gialanella S., Straffelini G., Stiasny K.H. Effect of deep cryogenic treatment on the mechanical properties of tool steels. J. Mater. Process. Technol. 2001;118:350–355. doi: 10.1016/S0924-0136(01)00973-6. DOI

Shinde T., Dhokey N.B. Influence of carbide density on surface roughness and quasi-stable wear behaviour of H13 die steel. Surf. Eng. 2017;33:944–952. doi: 10.1080/02670844.2017.1312739. DOI

Shinde T. Failure analysis of cryogenically treated H13 specimen in rotating bending fatigue. Eng. Fail. Anal. 2020;113:104535. doi: 10.1016/j.engfailanal.2020.104535. DOI

Das D., Ray K.K. Structure-property correlation of sub-zero treated AISI D2 steel. Mater. Sci. Eng. 2012;A541:45–60. doi: 10.1016/j.msea.2012.01.130. DOI

Das D., Ray K.K., Dutta A.K. Influence of temperature of sub-zero treatments on the wear behaviour of die steel. Wear. 2009;267:1361–1370. doi: 10.1016/j.wear.2008.11.029. DOI

Das D., Dutta A.K., Ray K.K. Influence of varied cryo-treatment on the wear behaviour of AISI D2 steel. Wear. 2009;266:297–309. doi: 10.1016/j.wear.2008.07.001. DOI

Das D., Dutta A.K., Ray K.K. Sub-zero treatments of AISI D2 steel: Part II. Wear behaviour. Mater. Sci. Eng. A. 2010;527:2194–2206. doi: 10.1016/j.msea.2009.10.071. DOI

Jurči P., Kusý M., Ptačinová J., Kuracina V., Priknerová P. Long-term sub-zero treatment of P/M Vanadis 6 ledeburitic tool steel-a preliminary study. Manuf. Technol. 2015;15:41–47. doi: 10.21062/ujep/x.2015/a/1213-2489/MT/15/1/41. DOI

Ptačinová J., Sedlická V., Hudáková M., Dlouhý I., Jurči P. Microstructure Toughness relationships in sub-zero treated and tempered Vanadis 6 steel compared to conventional treatment. Mater. Sci. Eng. A. 2017;702:241–258. doi: 10.1016/j.msea.2017.07.007. DOI

Jurči P., Ďurica J., Dlouhý I., Horník J., Planieta R., Kralovič D. Application of −140 °C Sub-Zero Treatment for Cr-V Ledeburitic Steel Service Performance Improvement. Metall. Mater. Trans. A. 2019;50:2413–2434. doi: 10.1007/s11661-019-05180-6. DOI

Jurči P., Sobotová J., Salabová P., Prikner O., Šuštaršič B., Jenko D. Subzero treatment of P/M Vanadis 6 ledeburitic tool steel. Int. Heat Treat. Surf. Eng. 2013;7:125–128. doi: 10.1179/1749514813Z.00000000073. DOI

Jovičevič-Klug P., Jovičevič-Klug M., Podgornik B. Effectiveness of deep cryogenic treatment on carbide precipitation. J. Mater. Res. Technol. 2020;9:13014–13026. doi: 10.1016/j.jmrt.2020.09.063. DOI

Fantineli D.G., Parcianello C.T., Rosendo T.S., Reguly A., Marco D., Tier M.D. Effect of heat and cryogenic treatment on wear and toughness of HSS AISI M2. J. Mater. Res. Technol. 2020;9:12354–12363. doi: 10.1016/j.jmrt.2020.08.090. DOI

Leskovšek V., Kalin M., Vižintin J. Influence of deep-cryogenic treatment on wear resistance of vacuum heat-treated HSS. Vacuum. 2006;80:507–518. doi: 10.1016/j.vacuum.2005.08.023. DOI

Yun D., Lin X., Xiao H. Deep Cryogenic Treatment of High-Speed Steel and Its Mechanism. Heat Treat. Met. 1988;3:55–59. doi: 10.1179/174951508X358482. DOI

Li J., Yan X., Liang X., Guo H., Li D.Y. Influence of different cryogenic treatments on high-temperature wear behavior of M2 steel. Wear. 2017;376–377:1112–1121. doi: 10.1016/j.wear.2016.11.041. DOI

Pellizzari M., Caliskanoglu D., Fernandez A., Barbero J.I., Pena B., Uemit T., Pizzaro Sanz R., Elvira Equizabal R., Alava L.A. Influence of different deep cryogenic treatment routes on the properties of high speed steel. HTM J. Heat Treat. Mater. 2012;67:111–117. doi: 10.3139/105.110141. DOI

Jovičevič-Klug P., Puš G., Jovičevič-Klug M., Žužek B., Podgornik B. Influence of heat treatment parameters on effectiveness of deep cryogenic treatment on properties of high-speed steels. Mater. Sci. Eng. 2022;A829:142157. doi: 10.1016/j.msea.2021.142157. DOI

Prieto G., Perez Ipiña J.E., Tuckart W.R. Cryogenic treatments on AISI 420 stainless steel: Microstructure and mechanical properties. Mater. Sci. Eng. A. 2014;605:236–243. doi: 10.1016/j.msea.2014.03.059. DOI

Li S., Xiao M., Ye G., Zhao K., Yang M. Effects of deep cryogenic treatment on microstructural evolution and alloy phases precipitation of a new low carbon martensitic stainless bearing steel during aging. Mater. Sci. Eng. A. 2018;732:167–177. doi: 10.1016/j.msea.2018.07.012. DOI

Li D.H., He W.C., Zhang X., Xiao M.G., Li S.H., Zhao K.Y., Yang M.S. Effects of traditional heat treatment and a novel deep cryogenic treatment on microstructure and mechanical properties of low-carbon high-alloy martensitic bearing steel. J. Iron Steel Res. Int. 2021;28:370–382. doi: 10.1007/s42243-020-00527-5. DOI

El Mehtedi M., Ricci P., Drudi L., El Mohtadi S., Cabibbo M., Spigarelli S. Analysis of the effect of Deep Cryogenic Treatment on the hardness and microstructure of X30 CrMoN 15 1 steel. Mater. Des. 2012;33:136–144. doi: 10.1016/j.matdes.2011.07.030. DOI

Darwin J.D., Mohan Lal D., Nagarajan G. Optimization of cryogenic treatment to maximize the wear resistance of 18% Cr martensitic stainless steel by Taguchi method. J. Mater. Proc. Technol. 2008;195:241–247. doi: 10.1016/j.jmatprotec.2007.05.005. DOI

Darwin J.D., Mohan Lal D., Nagarajan G. Optimization of cryogenic treatment to maximize the wear resistance of Chrome Silicon spring steel by Taguchi method. Int. J. Mat. Sci. 2007;2:17–28.

Arockia Jaswin M., Mohan Lal D. Optimization of the Cryogenic Treatment Process for EN Valve Steel using the Grey-Taguchi Method. Mater. Manuf. Process. 2010;25:842–850. doi: 10.1080/10426910903536766. DOI

Siva S.R., Mohan Lal D., Arockia Jaswin M. Optimization of Deep Cryogenic Treatment Process for 100Cr6 Bearing Steel using the Grey-Taguchi Method. Tribol. Trans. 2012;55:854–862. doi: 10.1080/10402004.2012.720002. DOI

Popandopulo A.N., Zhukova L.T. Transformation in High Speed Steels during Cold Treatment. Met. Sci. Heat Treat. 1980;22:708–710. doi: 10.1007/BF00700561. DOI

Nanesa H.G., Touziane H., Jahazi M. Influence of Cryogenic Process Parameters on Microstructure and Hardness Evolution of AISI D2 Tool Steel. Int. J. Adv. Manuf. Technol. 2016;85:881–890. doi: 10.1007/s00170-015-7980-7. DOI

Akhbarizadeh A., Shafyei A., Golozar M.A. Effects of cryogenic treatment on wear behaviour of D6 tool steel. Mater. Des. 2009;30:3259–3264. doi: 10.1016/j.matdes.2008.11.016. DOI

Oppenkowski A., Weber S., Theisen W. Evaluation of factors influencing deep cryogenic treatment that affect the properties of tool steels. J. Mater. Proc. Technol. 2010;210:1949–1955. doi: 10.1016/j.jmatprotec.2010.07.007. DOI

Amini K., Nategh S., Shafyei A. Influence of different cryo-treatments on tribological behavior of 80CrMo12 5 cold work tool steel. Mater. Des. 2010;31:4666–4675. doi: 10.1016/j.matdes.2010.05.028. DOI

Collins D.N., Dormer J. Deep Cryogenic Treatment of a D2 Cold-Work Tool Steel. Heat Treat. Met. 1997;24:71–74. doi: 10.1179/174951508X446376. DOI

Cheng L., Brakman C.M., Korevaar B.M., Mittemeijer E.J. The Tempering of Iron-Carbon Martensite; Dilatometric and Calorimetric Analysis. Metall. Trans. A. 1988;19:2415–2426. doi: 10.1007/BF02645469. DOI

Gill S.S., Singh H., Singh R., Singh J. Cryoprocessing of Cutting Tool Materials—A Review. Int. J. Adv. Manuf. Technol. 2010;48:175–192. doi: 10.1007/s00170-009-2263-9. DOI

Jovičevič-Klug P., Podgornik B. Review on the Effect of Deep Cryogenic Treatment of Metallic Materials in Automotive Applications. Metals. 2020;10:434. doi: 10.3390/met10040434. DOI

Ozogu A.N., Chukwurah N.C., Muhammed Z.A., Olabimtan O.H., Oddy Obi I.C., Anyim P.B., Suleiman M.A. Application of Cryogenics Treatment as an Engineering Tool for Textile Apparels and Metals: A Review. Int. J. Innov. Sci. Res. 2018;7:1292–1297.

Kalsi N.S., Sehgal R., Sharma V.S. Cryogenic Treatment of Tool Materials: A Review. Mater. Manuf. Process. 2010;25:1077–1100. doi: 10.1080/10426911003720862. DOI

Baldissera P., Delprete C. Deep Cryogenic Treatment: A Bibliographic Review. Open Mech. Eng. J. 2008;2:1–11. doi: 10.2174/1874155X00802010001. DOI

Sonar T., Lomte S., Gogte C. Cryogenic Treatment of Metal—A Review. Mater. Today Proc. 2018;5:25219–25228. doi: 10.1016/j.matpr.2018.10.324. DOI

Razavykia A., Delprete C., Baldissera P. Correlation between Microstructural Alteration, Mechanical Properties and Manufacturability after Cryogenic Treatment: A Review. Materials. 2019;12:3302. doi: 10.3390/ma12203302. PubMed DOI PMC

Vengatesh M., Srivignesh R., Balaji P.T., Karthik N.R. Review on Cryogenic Treatment of Steels. Int. J. Eng. Res. Technol. 2016;3:417–422.

Gill S.S., Singh J., Singh R., Singh H. Metallurgical principles of cryogenically treated tool steels—A review on the current state of science. Int. J. Adv. Manuf. Technol. 2011;54:59–82. doi: 10.1007/s00170-010-2935-5. DOI

Singh G., Pandey K.N. Effect of cryogenic treatment on properties of materials: A review. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2022;236:1758–1773. doi: 10.1177/09544089221090189. DOI

Gao Q., Jiang X., Sun H., Fang Y., Mo D., Li X., Shu R. Effect mechanism of cryogenic treatment on ferroalloy and nonferrous alloy and their weldments: A review. Mater. Today Commun. 2022;33:104830. doi: 10.1016/j.mtcomm.2022.104830. DOI

Kalia S. Cryogenic Processing: A Study of Materials at Low Temperatures. J. Low Temp. Phys. 2010;158:934–945. doi: 10.1007/s10909-009-0058-x. DOI

Amini K., Akhbarizadeh A., Javadpour S. Cryogenic Heat Treatment of Ferrous Materials—A Review of the Current State. Metall. Res. Technol. 2016;113:611. doi: 10.1051/metal/2016049. DOI

Totten G.E. Steel Heat Treatment Handbook. 2nd ed. CRC Press; Taylor and Francis; Boca Raton, FL, USA: 2007. 832p

Kula P., Dybowski K., Lipa S., Januszewicz B., Pietrasik R., Atraszkiewicz R., Wolowiec E. Effect of the Content of Retained Austenite and Grain Size on the Fatigue Bending Strength of Steels Carburized in a Low-pressure Atmosphere. Met. Sci. Heat Treat. 2014;56:440–443. doi: 10.1007/s11041-014-9778-x. DOI

Villa M., Somers M.A.J. Cryogenic treatment of an AISI D2 steel: The role of isothermal martensite formation and “martensite conditioning. Cryogenics. 2020;110:103131. doi: 10.1016/j.cryogenics.2020.103131. DOI

Muro P., Gimenez S., Iturriza I. Sintering behaviour and fracture toughness characterization of D2 matrix tool steel, comparison with wrought and PM D2. Scr. Mater. 2002;46:369–373. doi: 10.1016/S1359-6462(01)01253-2. DOI

Picas O., Cuadrado N., Casellas D., Goez A., Llanes L. Microstructural effects on the fatigue crack nucleation in cold work tool steels. Procedia Eng. 2010;2:1777–1785. doi: 10.1016/j.proeng.2010.03.191. DOI

Večko Pirtovšek T., Kugler G., Godec M., Tercelj M. Three Important Points that Relate to Improving the Hot Workability of Ledeburitic Tool Steels. Metall. Mater. Trans. A. 2012;43:3797–3808. doi: 10.1007/s11661-012-1195-4. DOI

Bin Abdul Rahim M.A.S., Bin Minhat M., Binti Hussein N.I.S., Bin Salleh M.S.A. A comprehensive review on cold work of AISI D2 tool steel. Metall. Res. Technol. 2017;115:104. doi: 10.1051/metal/2017048. DOI

Večko Pirtovšek T., Kugler G., Terčelj M. The behaviour of the carbides of ledeburitic AISI D2 tool steel during multiple hot deformation cycles. Mater. Charact. 2013;83:97–108. doi: 10.1016/j.matchar.2013.06.008. DOI

Ghasemi N.H., Boulgakoff J., Jahazi M. Influence of prior cold deformation on microstructure evolution of AISI D2 tool steel after hardening heat treatment. J. Manuf. Process. 2016;22:115–119. doi: 10.1016/j.jmapro.2016.02.002. DOI

Singh K., Khatirkar R.K., Sapate S.G. Microstructure evolution and abrasive wear behavior of D2 steel. Wear. 2015;328–329:206–216. doi: 10.1016/j.wear.2015.02.019. DOI

Torkamani H., Raygan S., Rassizadehghani J. Comparing microstructure and mechanical properties of AISI D2 steel after bright hardening and oil quenching. Mater. Des. 2014;54:1049–1055. doi: 10.1016/j.matdes.2013.09.043. DOI

Wilmes S., Kientopf G. Carbide Dissolution Rate and Carbide Contents in Usual High Alloyed Tool Steels at Austenitizing Temperatures between 900 °C and 1250 °C; Proceedings of the 6th International Tooling Conference; Karlstad, Sweden. 10–13 September 2002; pp. 533–547.

Kheirandish S., Saghafian H., Hedjazi J., Momeni M. Effect of Heat Treatment on Microstructure of Modified Cast AISI D3 Cold Work Tool Steel. J. Iron Steel Res. Int. 2010;17:40–45. doi: 10.1016/S1006-706X(10)60140-9. DOI

Srivatsa K., Srinivas P., Balachandran G., Balasubramanian V. Improvement of impact toughness by modified hot working and heat treatment in 13%Cr martensitic stainless steel. Mater. Sci. Eng. A. 2016;677:240–251. doi: 10.1016/j.msea.2016.09.045. DOI

Nykiel T., Hryniewicz T. Transformations of Carbides During Tempering of D3 Tool Steel. J. Mater. Eng. Perform. 2014;23:2050–2054. doi: 10.1007/s11665-014-0979-7. DOI

Bayer A.M., Becherer B.A., Vasco T. High-speed tool steels. In: Lampman S.R., Zorc T.B., Frissell H.J., editors. Machining. Volume 16. ASM International; Cleveland, OH, USA: 1989. pp. 51–59. ASM, Handbook.

Rong W., Andrén H.O., Wisell H., Dunlop G.L. The role of alloy composition in the precipitation behaviour of high speed steels. Acta Metall. Mater. 1992;40:1727–1738. doi: 10.1016/0956-7151(92)90116-V. DOI

Davis J.R. Wrought high-speed tool steels. In: Davis J.R., editor. ASM Specialty Handbook: Tool Materials. ASM International; Cleveland, OH, USA: 1995. pp. 10–21.

Da Silva F.J., Franco S.D., Machado A.R., Ezugwu E.O., Souza A.M., Jr. Performance of cryogenically treated HSS tools. Wear. 2006;261:674–685. doi: 10.1016/j.wear.2006.01.017. DOI

Gill S.S., Singh J., Singh R., Harpreet Singh H. Effect of Cryogenic Treatment on AISI M2 High Speed Steel: Metallurgical and Mechanical Characterization. J. Mater. Eng. Perform. 2012;21:1320–1326. doi: 10.1007/s11665-011-0032-z. DOI

Jurči P., Dománková M., Hudáková M., Ptačinová J., Pašák M., Palček P. Characterization of microstructure and tempering response of conventionally quenched, short- and long-time sub-zero treated PM Vanadis 6 ledeburitic tool steel. Mater. Charact. 2017;134:398–415. doi: 10.1016/j.matchar.2017.10.029. DOI

Jandová D., Šuchmann P., Nižňanská J. Microstructure of Tool Steel X37CrMoV5 after Cryogenic Treatment and its Effect on Wear Resistance. Key Eng. Mater. 2015;647:23–37. doi: 10.4028/www.scientific.net/KEM.647.23. DOI

Pérez M., Rodríguez C., Belzunce F.J. The use of cryogenic thermal treatments to increase the fracture toughness of a hot work tool steel used to make forging dies. Procedia Mater. Sci. 2014;3:604–609. doi: 10.1016/j.mspro.2014.06.100. DOI

Gavriljuk V.G., Theisen W., Sirosh V.V., Polshin E.V., Kortmann A., Mogilny G.S., Petrov Y.N., Tarusin Y.V. Low-temperature martensitic transformation in tool steels in relation to their deep cryogenic treatment. Acta Mater. 2013;61:1705–1715. doi: 10.1016/j.actamat.2012.11.045. DOI

Meng F., Tagashira K., Azuma R., Sohma H. Role of Eta-carbide Precipitation’s in the Wear Resistance Improvements of Fe-12Cr-Mo-V-1.4C Tool Steel by Cryogenic Treatment. ISIJ Int. 1994;34:205–210. doi: 10.2355/isijinternational.34.205. DOI

Pellizzari M. Influence of Deep Cryogenic Treatment on the Properties of Conventional and PM High Speed Steels. Metall. Ital. 2008;9:17–22.

Katoch S., Sehgal R., Singh V. Effect of cryogenic treatment on the tribological behaviour of H11 hot die steel dry sliding against D3 steel. Tribol.–Mater. Surf. Interfaces. 2016;10:185–195. doi: 10.1080/17515831.2016.1263030. DOI

Krauss G. Martensitic Structure. In: Colás R., Totten G.E., editors. Encyclopedia of Iron, Steel, and Their Alloys. Taylor & Francis; Abingdon, UK: 2015. pp. 2182–2187.

Krauss G. Martensite in steel: Strength and structure. Mater. Sci. Eng. A. 1999;273–275:40–57. doi: 10.1016/S0921-5093(99)00288-9. DOI

Li S., Guo H., Li J., Li Z., Li J. Carbides precipitation and kinetics of H13 steel subjected to deep cryogenic treatment. Mater. Sci. Technol. 2022;38:1376–1389. doi: 10.1080/02670836.2022.2079862. DOI

Mohanty O.N. On the stabilization of retained austenite: Mechanism and kinetics. Mater. Sci. Eng. 1995;B32:267–278. doi: 10.1016/0921-5107(95)03017-4. DOI

Chen W., He X., Yu W., Wang M., Yao K. Microstructure, Hardness, and Tensile Properties of Vacuum Carburizing Gear Steel. Metals. 2021;11:300. doi: 10.3390/met11020300. DOI

Andrews K.W. Empirical Formulae for Calculation of Some Transformation Temperatures. J. Iron Steel Inst. 1965;203:721–727.

Steven W., Haynes A.G. The Temperature of Formation of Martensite and Bainite in Low Alloy Steels. J. Iron Steel Inst. 1956;183:349–359.

Kung C.Y., Rayment J.J. An Examination of the Validity of Existing Empirical Formulae for the Calculation of ms Temperature. Metall. Trans. A. 1982;13:328–331. doi: 10.1007/BF02643327. DOI

Morito S., Nishikawa J., Maki T. Dislocation Density within Lath Martensite in Fe-C and Fe-Ni Alloys. ISIJ Int. 2003;43:1475–1477. doi: 10.2355/isijinternational.43.1475. DOI

Lu Y., Yu H., Sisson R.D., Jr. The effect of carbon content on the c/a ratio of as-quenched martensite in Fe-C alloys. Mater. Sci. Eng. A. 2017;700:592–597. doi: 10.1016/j.msea.2017.05.094. DOI

Lee J.S. Characteristics of vanadium alloyed carbonitrided steel for rolling bearing applications. J. ASTM Int. 2007;3:JAI100422. doi: 10.1520/JAI100422. DOI

Geijselaers H.J.M., Perdahciouglu E.S. Mechanically induced martensitic transformation as a stress-driven process. Scr. Mater. 2009;60:29–31. doi: 10.1016/j.scriptamat.2008.08.043. DOI

Stickels C.A., Peters C.R. Compressive strain-induced austenite transformation in 52100 steel. Metall. Mater. Trans. A. 1977;8:1193–1195. doi: 10.1007/BF02667406. DOI

Bhadeshia H.K.D.H. Steels for bearings. Prog. Mater. Sci. 2012;57:268–435. doi: 10.1016/j.pmatsci.2011.06.002. DOI

Luty W. Influence of heat treatment on the dimensional stability of bearing rings of steel 100Cr6 and 100MnCr6 at room temperature and at 150 °C. HTM J. Heat Treatm. Mater. 1972;27:27–33. doi: 10.1515/htm-1972-270108. DOI

Christ H.J., Sommer C., Mughrabi H., Voskamp A., Beswick J., Hengerer F. Fatigue behaviour of three variants of the roller bearing steel SAE 52100. Fatigue Fract. Eng. Mater. Struct. 1992;15:855–870. doi: 10.1111/j.1460-2695.1992.tb00062.x. DOI

Dommarco R.C., Kozaczek K.J., Bastias P.C., Hahn G.T., Rubin C.A. Residual stresses and retained austenite evolution in SAE 52100 steel under non-ideal rolling contact loading. Wear. 2004;257:1081–1088. doi: 10.1016/j.wear.2004.01.020. DOI

Stickels C.A. Rolling contact fatigue tests of 52100 bearing steel using a modified NASA ball test rig. Wear. 1984;98:199–210. doi: 10.1016/0043-1648(84)90227-8. DOI

Zaccone M.A., Kelley J.B., Krauss G. Heat Treatment ’87. Institute of Metals; London, UK: 1988. Fatigue and strain-hardening of high carbon martensite–austenite composite microstructures; pp. 93–102.

Pineau A.G., Pelloux R.M. Influence of strain-induced martensitic transformation on fatigue crack growth rates in stainless steels. Metall. Trans. 1974;5:1103–1122. doi: 10.1007/BF02644322. DOI

Xiaotian J., Bingzhe L., Chenqing G., Fusan S. Transformation of retained austenite in carburised case during fatigue crack growth. Acta Metall. Sin. (Engl. Lett.) 1990;3:268–275.

Misra R.D.K. Understanding Strength-Toughness Combination in the Processing of Engineering Steels: A Perspective. Mater. Manuf. Process. 2010;25:60–71. doi: 10.1080/10426910903163223. DOI

Zaccone M.A., Krauss G. Elastic limit and microplastic response of hardened steels. Metall. Mater. Trans. A. 1993;24:2263–2277. doi: 10.1007/BF02648600. DOI

Neu R.W., Sehitoglu H. Transformation of retained austenite in carburized 4320 steel. Metall. Mater. Trans. A. 1991;22:1491–1500. doi: 10.1007/BF02667363. DOI

Borchers V.H., Doffin K. Kinetik der bildung des karbids Fe2C in stahl 100Cr6. Arch. Eisenhüttenwes. 1969;40:493–498. doi: 10.1002/srin.196904347. DOI

Mathews J.A. Retained austenite—A contribution to the metallurgy of magnetism. Trans. Am. Soc. Steel Treat. 1925;8:565–583.

[(accessed on 10 June 2021)]. Available online: https://authors.library.caltech.edu/5456/1/hrst.mit.edu/hrs/materials/public/ElectronMicroscope/EM_HistOverview.htm.

Reasbeck R.B. Improved Tool Life by the Cryotough Treatment. Metallurgia. 1989;4:178–179.

Çakir F.H., Çelik O.N. The effects of cryogenic treatment on the toughness and tribological behaviors of eutectoid steel. J. Mech. Sci. Technol. 2017;31:3233–3239. doi: 10.1007/s12206-017-0613-3. DOI

Villa M., Pantleon K., Somers M.A.J. Enhanced carbide precipitation during tempering of sub-zero Celsius treated AISI 52100 bearing steel; Proceedings of the Heat Treat & Surface Engineering Conference & Expo 2013; Chennai, India. 16–18 May 2013.

Soleimany J., Ghayour H., Amini K., Gharavi F. The Effect of Deep Cryogenic Treatment on Microstructure and Wear Behavior of H11 Tool Steel. Phys. Met. Metallogr. 2019;120:888–897. doi: 10.1134/S0031918X19090035. DOI

Šuchmann P., Nižňanska J. Effect of Deep Cryogenic Treatment on Carbides Precipitation Kinetics during Tempering of the X37CrMoV5-1 Hot Working Tool Steel; Proceedings of the European Conference on Heat Treatment 2015 and 22nd IFHTSE Congress 2015; Venice, Italy. 20–22 May 2015;

Koneshlou M., Asl K.M., Khomamizadeh F. Effect of cryogenic treatment on microstructure, mechanical and wear behaviors of AISI H13 hot work tool steel. Cryogenics. 2011;51:55–61. doi: 10.1016/j.cryogenics.2010.11.001. DOI

Collins D.N. Cryogenic treatment of tool steels. Adv. Mater. Proc. 1998;12:24–29.

Surberg C.H., Stratton P., Lingenhoele K. The effect of some heat treatment parameters on the dimensional stability of AISI D2. Cryogenics. 2008;48:42–47. doi: 10.1016/j.cryogenics.2007.10.002. DOI

Akhbarizadeh A., Golozar M.A., Shafeie A., Kholghy M. Effects of Austenitizing Time on Wear Behaviour of D6 Tool Steel After Deep Cryogenic Treatment. J. Iron Steel Res. Int. 2009;16:29–32. doi: 10.1016/S1006-706X(10)60023-4. DOI

Akhbarizadeh A., Amini K., Javadpour S. Effects of applying an external magnetic field during the deep cryogenic heat treatment on the corrosion resistance and wear behaviour of 1.2080 tool steel. Mater. Des. 2012;41:114–123. doi: 10.1016/j.matdes.2012.03.045. DOI

Amini K., Akhbarizadeh A., Javadpour S. Investigating the effect of holding duration on the microstructure of 1.2080 tool steel during the deep cryogenic treatment. Vacuum. 2012;86:1534–1540. doi: 10.1016/j.vacuum.2012.02.013. DOI

Akhbarizadeh A., Javadpour S., Amini K. Investigating the effect of electric current flow on the wear behaviour of 1.2080 tool steel during the deep cryogenic heat treatment. Mater. Des. 2013;45:103–109. doi: 10.1016/j.matdes.2012.08.012. DOI

Akhbarizadeh A., Javadpour S., Amini K., Yaghtin A.H. Investigating the effect of ball milling during the deep cryogenic heat treatment of the 1.2080 tool steel. Vacuum. 2013;90:70–74. doi: 10.1016/j.vacuum.2012.09.023. DOI

Jovičevič-Klug P., Jovičevič-Klug M., Sever T., Feizpour D., Podgornik B. Impact of steel type, composition and heat treatment parameters on effectiveness of deep cryogenic treatment. J. Mater. Res. Technol. 2021;14:1007–1020. doi: 10.1016/j.jmrt.2021.07.022. DOI

Podgornik B., Paulin I., Zajec B., Jacobson S., Leskovšek V. Deep cryogenic treatment of tool steels. J. Mater. Proc. Technol. 2016;229:398–406. doi: 10.1016/j.jmatprotec.2015.09.045. DOI

Voglar J., Novak Ž., Jovičevič-Klug P., Podgornik B., Kosec T. Effect of Deep Cryogenic Treatment on Corrosion Properties of Various High-Speed Steels. Metals. 2021;11:14. doi: 10.3390/met11010014. DOI

Leskovšek V., Podgornik B. Vacuum heat treatment, deep cryogenic treatment and simultaneous pulse plasma nitriding and tempering of P/M S390MC steel. Mater. Sci. Eng. A. 2012;531:119–129. doi: 10.1016/j.msea.2011.10.044. DOI

Podgornik B., Majdic F., Leskovšek V., Vizintin J. Improving tribological properties of tool steels through combination of deep-cryogenic treatment and plasma nitriding. Wear. 2012;288:88–93. doi: 10.1016/j.wear.2011.04.001. DOI

Jovičevič-Klug P., Podgornik B. Comparative study of conventional and deep cryogenic treatment of AISI M3:2 (EN 1.3395) high-speed steel. J. Mater. Res. Technol. 2020;9:13118–13127. doi: 10.1016/j.jmrt.2020.09.071. DOI

Huang J.Y., Zhu Y.T., Liao X.Z., Beyerlein I.J., Bourke M.A., Mitchell T.E. Microstructure of cryogenic treated M2 tool steel. Mater. Sci. Eng. A. 2003;339:241–244. doi: 10.1016/S0921-5093(02)00165-X. DOI

Candane D., Alagumurthi N., Palaniradja K. Effect of cryogenic treatment on microstructure and wear characteristics of AISI M35 HSS. Int. J. Mater. Sci. Appl. 2013;2:56–65. doi: 10.11648/j.ijmsa.20130202.14. DOI

Nasery Isfahanya A., Saghafiana H., Borhani G. The effect of heat treatment on mechanical properties and corrosion behavior of AISI 420 martensitic stainless steel. J. Alloys Compd. 2011;509:3931–3936. doi: 10.1016/j.jallcom.2010.12.174. DOI

Shahriari A., Ghaffari M., Khaksar L., Nasiri A., Hadadzadeh A., Amirkhiz B.S., Mohammadi M. Corrosion resistance of 13wt.% Cr martensitic stainless steels: Additively manufactured CX versus wrought Ni-containing AISI 420. Corr. Sci. 2021;184:109362. doi: 10.1016/j.corsci.2021.109362. DOI

Paydar H., Amini K., Akhbarizadeh A. Investigating the effect of deep cryogenic heat treatment on the wear behavior of 100Cr6 alloy steel. Kovove Mater. 2014;52:163–169. doi: 10.4149/km_2014_3_163. DOI

Stojko A., Hansen M.F., Slycke J., Somers M.A.J. Isothermal Martensite Formation at Sub-Zero Temperatures. J. ASTM Int. 2011;8:JAI103459. doi: 10.1520/JAI103459. DOI

Pietikainen J. Effects of the aging of martensite on its deformation characteristics and on fracture in Fe–Ni–Si–C steel. J. Iron Steel Inst. 1968;1:74–78.

Villa M., Grumsen F.B., Pantleon K., Somers M.A.J. Martensitic transformation and stress partitioning in a high-carbon steel. Scr. Mater. 2012;67:621–624. doi: 10.1016/j.scriptamat.2012.06.027. DOI

Villa M., Pantleon K., Somers M.A.J. Evolution of compressive strains in retained austenite during sub-zero Celsius martensite formation and tempering. Acta Mater. 2014;65:383–392. doi: 10.1016/j.actamat.2013.11.007. DOI

Preciado M., Pellizzari M. Influence of deep cryogenic treatment on the thermal decomposition of Fe-C martensite. J. Mater. Sci. 2014;49:8183–8191. doi: 10.1007/s10853-014-8527-2. DOI

Jurči P., Dománková M., Ptačinová J., Pašák M., Kusý M., Priknerová P. Investigation of the Microstructural Changes and Hardness Variations of Sub-Zero Treated Cr-V Ledeburitic Tool Steel Due to the Tempering Treatment. J. Mater. Eng. Perform. 2018;27:1514–1529. doi: 10.1007/s11665-018-3261-6. DOI

Li B., Li C., Wang Y., Jin X. Effect of Cryogenic Treatment on Microstructure and Wear Resistance of Carburized 20CrNi2MoV Steel. Metals. 2018;8:808. doi: 10.3390/met8100808. DOI

Ghosh P., Dhokey N.B. Refinement of tempered martensite structure and its effect on wear mechanism in SAE 8620. Tribol.–Mater. Surf. Interfaces. 2016;10:1262586. doi: 10.1080/17515831.2016.1262586. DOI

Putu Widiantara I., Mahendradhany A.P., Putra D.P., Yang H.W., Park K.S., Ko G. Achieving high fracture toughness and tribological properties in high carbon steels via sub-zero treatment and low-temperature tempering. J. Alloys Compd. 2020;821:153195. doi: 10.1016/j.jallcom.2019.153195. DOI

Moreira J.C., Ávila R.F., Godoy G.C.D., Abrao A.M. The effect of the cryogenic treatment on the machinability of hardened AISI 52100 bearing steel. Rev. Mater. 2009;14:932–946. doi: 10.1590/S1517-70762009000300005. DOI

Tyshchenko A.I., Theisen W., Oppenkowski A., Siebert S., Razumov O.N., Skoblik A.P., Sirosh V.A., Petrov J.N., Gavriljuk V.G. Low-temperature martensitic transformation and deep cryogenic treatment of a tool steel. Mater. Sci. Eng. A. 2010;527:7027–7039. doi: 10.1016/j.msea.2010.07.056. DOI

Jeleńkowski J., Ciski A., Babul T. Effect of deep cryogenic treatment on substructure of HS6-5-2 high speed steel. J. Achiev. Mater. Manuf. Eng. 2010;43:80–87.

Xu G., Huang P., Feng Z., Wei Z., Zu G. Effect of Deep Cryogenic Time on Martensite Multi-Level Microstructures and Mechanical Properties in AISI M35 High-Speed Steel. Materials. 2022;15:6618. doi: 10.3390/ma15196618. PubMed DOI PMC

Villa M., Somers M.A.J. On the Role of Isothermal Martensite Formation during Cryogenic Treatment of Steels. HTM J. Heat Treat. Mater. 2020;75:263–286. doi: 10.3139/105.110420. DOI

Cahn R.W., Hassen P. Physical Metallurgy. 4th ed. Elsevier Science, B.V.; Amsterdam, The Netherlands: 1996.

Villa M., Hansen M.F., Somers M.A.J. Martensite formation in Fe-C alloys at cryogenic temperatures. Scr. Mater. 2017;141:129–132. doi: 10.1016/j.scriptamat.2017.08.005. DOI

Villa M., Hansen M.F., Pantleon K., Somers M.A.J. Thermally activated growth of lath martensite in Fe–Cr–Ni–Al stainless steel. Mater. Sci. Technol. 2015;31:115–122. doi: 10.1179/1743284714Y.0000000583. DOI

Eldis G.T., Cohen M. Strength of initially virgin martensite at −196 °C after aging and tempering. Metall. Trans. A. 1983;14:1007–1012. doi: 10.1007/BF02659848. DOI

van Genderen M.J., Boettger A., Cernik R.J., Mittemeijer E.J. Early Stages of Decomposition in Iron-Carbon and Iron-Nitrogen Martensites: Diffraction Analysis Using Synchrotron Radiation. Metall. Trans. A. 1993;24:1965–1973. doi: 10.1007/BF02666331. DOI

McEvily A.J., Ku R.C., Johnston T.L. The source of martensite strength. Trans. Metall. Soc. AIME. 1966;236:108–114.

Li S., Deng L., Wu X., Min Y., Wang H. Influence of deep cryogenic treatment on microstructure and evaluation by internal friction of a tool steel. Cryogenics. 2010;50:754–758. doi: 10.1016/j.cryogenics.2010.09.002. DOI

Pellizzari M., Menegante V., Villa M., Somers M.A.J. On the Influence of Deep Cryogenic Treatment on Tempering Transformations in AISI D2 Steels; Proceedings of the 26th IFHTSE Congress of Heat Treatment and Surface Engineering; Moscow, Russia. 17–19 September 2019.

Koval J.N., Kokorin V.V. Tetragonality of Carbonless Martensite. Fiz. Met. Metalloved. 1975;39:1044–1048. (In Russian)

Ulakko K., Gavriljuk V.G., Nadutov V.M. Aging of Freshly Formed Fe-Based Martensites at Low Temperatures. Metall. Mater. Trans. A. 1994;25:889–909. doi: 10.1007/BF02652265. DOI

Uwakweh O.N.C., Génin J.M.R., Silvain J.F. Electron Microscopy Study of the Aging and First Stage of Tempering of High-Carbon Fe-C Martensite. Metall. Trans. A. 1991;22:797–806. doi: 10.1007/BF02658989. DOI

Katoch S., Sehgal R., Singh V. Effect of Cryogenic Treatment on Hardness, Microstructure and Wear Behavior of Hot Die Steel Grade AISI-H13; Proceedings of the International Conference on Advances in Tribology and Engineering Systems; Gujarat, India. 15–18 October 2013; pp. 159–166.

Korade D., Ramana K.V., Jagtap K. Study of effect of population density of carbides on surface roughness and wear rate of H21 tool steel. Mater. Today Proc. 2019;19:228–232. doi: 10.1016/j.matpr.2019.06.709. DOI

Li S., Min N., Deng L., Wu X., Min Y., Wang H. Influence of deep cryogenic treatment on internal friction behaviour in the process of tempering. Mater. Sci. Eng. A. 2011;528:1247–1250. doi: 10.1016/j.msea.2010.10.012. DOI

Li S., Min N., Li J., Wu X. Internal friction measurements of phase transformations during the process of deep cryogenic treatment of a tool steel. Cryogenics. 2013;57:1–5. doi: 10.1016/j.cryogenics.2013.03.003. DOI

Li S., Wu X. Microstructural evolution and corresponding property changes after deep cryo-treatment of tool steel. Mater. Sci. Technol. 2016;31:1867–1878. doi: 10.1179/1743284715Y.0000000038. DOI

Cheng L., van der Pers N.M., Boettger A., de Keijser T.H., Mittemeijer E.J. Lattice Changes of Iron-Carbon Martensite on Aging at Room Temperature. Metall. Trans. A. 1991;22:1957–1967. doi: 10.1007/BF02669863. DOI

Gavriljuk V.G., Firstov S.A., Sirosh V.A., Tyshchenko A.I., Mogilny G.S. Carbon Distribution in Low-Temperature Isothermal Iron-Based Martensite and Its Tetragonality. Metallofiz. Noveishie Tekhnol. 2016;38:455–475. doi: 10.15407/mfint.38.04.0455. DOI

Gavriljuk V.G., Sirosh V.V., Petrov Y.N., Tyshchenko A.I., Theisen W., Kortmann A. Carbide Precipitation During Tempering of a Tool Steel Subjected to Deep Cryogenic Treatment. Metall. Mater. Trans. A. 2014;45:2453–2465. doi: 10.1007/s11661-014-2202-8. DOI

Zhou G., Deng S., Wei W., Liu Q. Effect of multiple deep cryo-treating and tempering on microstructure and property evolution of high carbon bearing steel. Mater. Res. Express. 2020;7:066529. doi: 10.1088/2053-1591/ab9c63. DOI

Jovičevič-Klug P., Jenko M., Jovičevič-Klug M., Šetina Batič B., Kovač J., Podgornik B. Effect of deep cryogenic treatment on surface chemistry and microstructure of selected high-speed steels. Appl. Surf. Sci. 2021;548:149257. doi: 10.1016/j.apsusc.2021.149257. DOI

Alexandru G., Ailincai C., Baciu C. Influence de traitements thermiques à basse temperature sur la duree de vie des aciers à outils. Rev. Metall./Mém. Etud. Sci. 1990;87:383–388.

Wang W., Srinivasan V., Siva S., Bensely A., Lal M., Alfantazi A. Corrosion Behavior of Deep Cryogenically Treated AISI 420 and AISI 52100 Steel. Corrosion. 2014;70:708–720. doi: 10.5006/1150. DOI

Pellizzari M., Molinari A. Deep Cryogenic Treatment of Cold Work Tool Steel; Proceedings of the 6th International Tooling Conference; Karlstad, Sweden. 10–13 September 2002; pp. 657–669.

Amini K., Akhbarizadeh A., Javadpour S. Effect of deep cryogenic treatment on the formation of nano-sized carbides and the wear behavior of D2 tool steel. Int. J. Miner. Metall. Mater. 2012;19:795–799. doi: 10.1007/s12613-012-0630-2. DOI

Tisza M. Physical Metallurgy for Engineers. 2nd ed. ASM International; Materials Park, OH, USA: Freund Publishing House Ltd.; London, UK: Tel Aviv, Israel: 2002.

Callister W.D., Rethwisch D.G. Materials Science and Engineering—An Introduction. 8th ed. Wiley Publishing; Hoboken, NJ, USA: 2009.

Shtansky D.V., Nakai K., Ohmori Y. Decomposition of Martensite by Discontinuous-like Precipitation Reaction in an Fe-17Cr-0.5C Alloy. Acta Mater. 2000;48:969–983. doi: 10.1016/S1359-6454(99)00364-X. DOI

Jurči P., Ptačinová J., Sahul M., Dománková M., Dlouhý I. Metallurgical principles of microstructure formation in sub-zero treated cold-work tool steels—A review. Matér. Tech. 2018;106:104. doi: 10.1051/mattech/2018022. DOI

Medvedeva N.I., Kar’kina L.E., Ivanovski A.L. Effect of Chromium on the Electronic Structure of the Cementite Fe3C. Phys. Solid State. 2006;48:15–19. doi: 10.1134/S1063783406010045. DOI

Inoue A., Ogura T., Masumoto T. Microstructures of deformation and fracture of cementite in pearlitic carbon steels strained at various temperatures. Metall. Mater. Trans. A. 1977;8:1689–1695. doi: 10.1007/BF02646871. DOI

Umemoto M., Todaka Y., Tsuchiya K. Mechanical Properties of Cementite and Fabrication of Artificial Pearlite. Mater. Sci. Forum. 2003;426–432:859–864. doi: 10.4028/www.scientific.net/MSF.426-432.859. DOI

Kim W.J., Wolfenstine J., Ruano O.A., Frommeyer G., Sherby O.D. Processing and superplastic properties of fine-grained iron carbide. Metall. Mater. Trans. A. 1992;23:527–535. doi: 10.1007/BF02801170. DOI

Porter D.A., Easterling K.E., Smith G.D.W. Dynamic studies of the tensile deformation and fracture of pearlite. Acta Metall. 1978;26:1405–1422. doi: 10.1016/0001-6160(78)90156-6. DOI

Krauss G. Microstructure and Properties of Carburized Steels. In: Dossett J.L., Totten G.E., editors. Heat Treating of Irons and Steels. Volume 4. ASM International; Materials Park, OH, USA: 1991. pp. 363–375.

Mohrbacher H. Metallurgical concepts for optimized processing and properties of carburizing steel. Adv. Manuf. 2016;4:105–114. doi: 10.1007/s40436-016-0142-9. DOI

Neuhauser H.J., Pitsch W. Zur Erniedrigung der Martensittemperatur durch inkohärente Teilchen im Austenit. Arch. Eisenhüttenwesen. 1973;44:235–240. doi: 10.1002/srin.197304523. DOI

Chiu L.H., Lin Y.M., Yeh S.H., Chang H. Effect of Cryogenic Treatment and Carbide Spray Coating on the Wear Behavior of Carburized steel. Adv. Mat. Res. 2011;154–155:1143–1151. doi: 10.4028/www.scientific.net/AMR.154-155.1143. DOI

Kratzer D., Dobler F., Tobie T., Hoja T., Steinbacher M., Stahl K. Effect of low-temperature treatments on surface hardness, retained austenite content, residual stress condition and the resulting tooth root bending strength of case hardened 18CrNiMo7-6 gears. J. Mech. Eng. Sci. 2019;233:7350–7357. doi: 10.1177/0954406219846160. DOI

Bensely A., Venkatesh S., Mohan Lal D., Nagarajan G., Rajadurai A., Junik K. Effect of cryogenic treatment on distribution of residual stress in case carburized En 353 steel. Mater. Sci. Eng. A. 2008;479:229–235. doi: 10.1016/j.msea.2007.07.035. DOI

Karaca B., Gün T., Dayanç A., Kumruoglu L.C. Property Improvement of Subzero/Cryogenic Heat Treated Camshafts made of 8620H, 16MnCr5 and 100Cr6 Steels. Acta Phys. Pol. A. 2019;135:800–803. doi: 10.12693/APhysPolA.135.800. DOI

Yan Y., Luo Z., Liu K., Zhang C., Wang M., Wang X. Effect of Cryogenic Treatment on the Microstructure and Wear Resistance of 17Cr2Ni2MoVNb Carburizing Gear Steel. Coatings. 2022;12:281. doi: 10.3390/coatings12020281. DOI

Yan X., Liu K., Luo Z., Wang M., Wang X. Effect of Cryogenic Treatment on Microstructure, Mechanical Properties and Distortion of Carburized Gear Steels. Metals. 2021;11:1940. doi: 10.3390/met11121940. DOI

Roy S., Sundararajan S. The effect of heat treatment routes on the retained austenite and Tribomechanical properties of carburized AISI 8620 steel. Surf. Coat. Technol. 2016;308:236–243. doi: 10.1016/j.surfcoat.2016.06.095. DOI

Li C., Li B.Z., Jin X., Wang Y. Microstructure and mechanical properties in core of a carburizing 20CrNi2MoV bearing steel subjected to cryogenic treatment. J. Iron Steel Res. Int. 2021;28:360–369. doi: 10.1007/s42243-020-00516-8. DOI

Samuel P., Arul S. Effect of Cryogenic Treatment on the Mechanical Properties of Low Carbon Steel IS 2062. Mater. Today Proc. 2018;5:25065–25074. doi: 10.1016/j.matpr.2018.10.307. DOI

Karaca B., Kumruoğlu L.C. Industrial scale extrusion performance of cryogenically processed DIN 100 Cr6 and DIN 21NiCrMo2 steels. Rev. Metal. 2022;58:e212. doi: 10.3989/revmetalm.212. DOI

Baldissera P., Delprete C. Effects of deep cryogenic treatment on static mechanical properties of 18NiCrMo5 carburized steel. Mater. Des. 2009;30:1435–1440. doi: 10.1016/j.matdes.2008.08.015. DOI

Baldissera P. Fatigue scatter reduction through deep cryogenic treatment on the 18NiCrMo5 carburized steel. Mater. Des. 2009;30:3636–3642. doi: 10.1016/j.matdes.2009.02.019. DOI

Jung S., Medlin D., Krauss G. Effects of Subzero Treatments on the Bending Fatigue Performance of Carburized SAE-4320 and SAE-9310 Steels. SAE; Warrendale, PA, USA: 1996. SAE Technical Paper 960313. DOI

Preciado M., Bravo P., Alegre J. Effect of low temperature tempering prior cryogenic treatment on carburized steels. J. Mater. Proc. Technol. 2006;176:41–44. doi: 10.1016/j.jmatprotec.2006.01.011. DOI

Mohan N., Arul S. Effect of Cryogenic Treatment on the Mechanical Properties of Alloy Steel 16MnCr5. Mater. Today Proc. 2018;5:25265–25275. doi: 10.1016/j.matpr.2018.10.329. DOI

Cappel J., Weinberg M., Flender R. The metallurgy of roller-bearing steels. Steel Grips. 2004;2:261–268.

Beswick J.M. Fracture and fatigue crack propagation properties of hardened 52100 steel. Metall. Mater. Trans. A. 1989;20:1961–1973. doi: 10.1007/BF02650283. DOI

Cui W., San-Martín D., Rivera-Díaz-del-Castillo P.E.J. Stability of retained austenite in martensitic high carbon steels. Part I: Thermal stability. Mater. Sci. Eng. A. 2018;711:683–695. doi: 10.1016/j.msea.2017.10.102. DOI

Barrow A.T.W., Kang J.H., Rivera-Díaz-del-Castillo P.E.J. The ε→η→Θ transition in 100Cr6 and its effect on mechanical properties. Acta Mater. 2012;60:2805–2815. doi: 10.1016/j.actamat.2012.01.046. DOI

Sri Siva R., Mohan Lal D., Kesavan Nair P., Arockia Jaswin M. Influence of cryogenic treatment on the wear characteristics of 100Cr6 bearing steel. Int. J. Miner. Metall. Mater. 2014;21:46–51. doi: 10.1007/s12613-014-0863-3. DOI

Sri Siva R., Arockia Jaswin M., Mohan Lal D. Enhancing the Wear Resistance of 100Cr6 Bearing Steel Using Cryogenic Treatment. Tribol. Trans. 2012;55:387–393. doi: 10.1080/10402004.2012.664837. DOI

Joseph Vimal A., Bensely A., Mohan Lal D., Srinivasan K. Deep Cryogenic Treatment Improves Wear Resistance of En 31 Steel. Mater. Manuf. Process. 2008;23:369–376. doi: 10.1080/10426910801938098. DOI

Jovičevič-Klug P., Kranjec T., Jovičevič-Klug M., Kosec T., Podgornik B. Influence of the Deep Cryogenic Treatment on AISI 52100 and AISI D3 Steel’s Corrosion Resistance. Materials. 2021;14:6357. doi: 10.3390/ma14216357. PubMed DOI PMC

Kara F., Özbek O., Özbek N.A., Uygur I. Investigation of the Effect of Deep Cryogenic Process on Residual Stress and Residual Austenite. Gazi J. Eng. Sci. 2021;7:143–151. doi: 10.30855/gmbd.2021.02.07. DOI

Harish S., Bensely A., Mohan Lal D., Rajadurai A., Lenkey G.B. Microstructural study of cryogenically treated En 31 bearing steel. J. Mater. Process. Technol. 2009;209:3351–3357. doi: 10.1016/j.jmatprotec.2008.07.046. DOI

Hansen N. Hall-Petch relation and boundary strengthening. Scr. Mater. 2004;51:801–806. doi: 10.1016/j.scriptamat.2004.06.002. DOI

Zhang Z., Delagnes D., Bernhart G. Microstructure evolution of hot-work tool steels during tempering and definition of a kinetic law based on hardness measurements. Mater. Sci. Eng. A. 2004;380:222–230. doi: 10.1016/j.msea.2004.03.067. DOI

Okuno T. Effect of Microstructure on the Toughness of Hot Work Tool Steels. AISI H13, H10, and H19. Trans. ISIJ. 1987;27:51–59. doi: 10.2355/isijinternational1966.27.51. DOI

Deirmina F., Peghini N., Al Mangour B., Grzesiak D., Pellizzari M. Heat treatment and properties of a hot work tool steel fabricated by additive manufacturing. Mater. Sci. Eng. A. 2019;753:109–121. doi: 10.1016/j.msea.2019.03.027. DOI

Chou C.Y., Pettersson N.H., Durga A., Zhang F., Oikonomou C., Borgenstam A., Odqvist J., Lindwall G. Influence of solidification structure on austenite to martensite transformation in additively manufactured hot-work tool steels. Acta Mater. 2021;215:117044. doi: 10.1016/j.actamat.2021.117044. PubMed DOI PMC

Xu N., Cavallaro G.P., Gerson A.R. Synchrotron micro-diffraction analysis of the microstructure of cryogenically treated high performance tool steels prior to and after tempering. Mater. Sci. Eng. A. 2010;527:6822–6830. doi: 10.1016/j.msea.2010.06.072. DOI

Pérez M., Belzunce F.J. The effect of deep cryogenic treatments on the mechanical properties of an AISI H13 steel. Mater. Sci. Eng. A. 2015;624:32–40. doi: 10.1016/j.msea.2014.11.051. DOI

López-Leyva A., Luis-Pantoja G., Juárez-Islas J.A., Mejía-Caballero I., Campos-Silva I. Influence of Heat and Cryogenic Treatments on the Abrasive Wear Behavior of H13 Tool Steel. J. Mater. Eng. Perform. 2023;32:10254–10264. doi: 10.1007/s11665-023-07865-x. DOI

Amini K., Negahbani M., Ghayour H. The effect of deep cryogenic treatment on hardness and wear behavior of the H13 tool steel. Metall. Ital. 2015;3:53–58.

Katoch S., Sehgal R., Singh V., Guptad M.K., Miae M., Pruncuf C.I. Improvement of tribological behavior of H-13 steel by optimizing the cryogenic-treatment process using evolutionary algorithms. Tribol. Int. 2019;140:105895. doi: 10.1016/j.triboint.2019.105895. DOI

Katoch S., Sehgal R., Singh V. Wear resistance evaluation of cryogenically treated AISI–H11 steel: An optimization approach. Indian J. Eng. Mater. Sci. 2019;26:112–125.

Dhokey N.B., Lalge P., Rajankar A., Bawane K., Mahajan R. Effect of Cryosoaking Period on Soft Tempering Temperature and Wear Mechanism in AISI H11 Tool Steel; Proceedings of the 7th International Conference on Fracture Fatigue and Wear; Ghent, Belgium. 9–10 July 2019; pp. 569–580.

Katoch S., Sehgal R., Singh V. Optimization of friction and wear characteristics of varied cryogenically treated hot die steel grade AISI-H13 under dry condition. Friction. 2017;5:66–86. doi: 10.1007/s40544-017-0139-9. DOI

Bhawar V., Khot S., Kattire P., Mehta M., Rajkumar Singh R. Influence of Deep Cryogenic Treatment (DCT) on Thermo Mechanical Performance of AISI H13 Tool Steel. J. Mater. Sci. Chem. Eng. 2017;5:91–101. doi: 10.4236/msce.2017.51013. DOI

Gecu R. Combined effects of cryogenic treatment and tempering on microstructural and tribological features of AISI H13 steel. Mater. Chem. Phys. 2022;292:126802. doi: 10.1016/j.matchemphys.2022.126802. DOI

Katoch S., Sehgal R., Singh V. Evolution of mechanical properties and microstructure of differently cryogenically treated hot die steel AISI–H13. Int. J. Mater. Res. 2017;108:173–184. doi: 10.3139/146.111467. DOI

Han L., Wang Y., Liu S., Zhang Z.H., Song X., Li Y., Liu W., Yang Z., Mu M. Effect of cryogenic treatment on the microstructure and mechanical properties of selected laser melted H13 steel. J. Mater. Res. Technol. 2022;21:5056–5065. doi: 10.1016/j.jmrt.2022.11.068. DOI

Nakonieczny A., Ciski A., Babul T. Cryogenic Treatment and Peening of Hot-work Tool Steel. BHM-Berg-Hüttenmännische Monatshefte. 2010;155:105–109. doi: 10.1007/s00501-010-0544-0. DOI

Shinde T., Pruncu C., Dhokey N.B., Parau A.C., Vladescu A. Effect of Deep Cryogenic Treatment on Corrosion Behavior of AISI H13 Die Steel. Materials. 2021;14:7863. doi: 10.3390/ma14247863. PubMed DOI PMC

Korade D., Ramana K.V., Jagtap K. Influence of Cryogenic Treatment on the Tribological Behaviour of AISI H21 Tool Steel. Mater. Res. 2019;22:e20170745. doi: 10.1590/1980-5373-mr-2017-0745. DOI

Korade D., Ramana K.V., Jagtap K. Effect of Carbide Density on Fatigue Limit of H21 Die Steel. J. Mater. Eng. Perform. 2020;29:230–241. doi: 10.1007/s11665-020-04556-9. DOI

Liu Y., Lin J., Min J., Ma Z., Wu B. Effect of Deep Cryogenic Treatment on Mechanical Properties and Microstructure of the Tool Steel CR7V for Hot Stamping. J. Mater. Eng. Perform. 2018;27:4382–4391. doi: 10.1007/s11665-018-3552-y. DOI

Jimbert P., Iturrondobeitia M., Julen Ibarretxe J., Fernandez-Martinez R. Influence of Cryogenic Treatment on Wear Resistance and Microstructure of AISI A8 Tool Steel. Metals. 2018;8:1038. doi: 10.3390/met8121038. DOI

Wills W.H. Practical observations on high-carbon high chromium tool steels. Trans. ASM. 1935;23:469–475.

Robertson J. Diamond-like amorphous carbon. Mater. Sci. Eng. R. 2002;37:129–281. doi: 10.1016/S0927-796X(02)00005-0. DOI

Liljengren M., Kjellsson K., Johansson T., Asnafi N. Die Materials, Hardening Methods and Surface Coatings for Forming of High, Extra High & Ultra High Strength Steel Sheets (HSS/EHSS/UHSS); Proceedings of the Annual Conference of the International Deep Drawing Research Group (IDDRG); Porto, Portugal. 19–21 June 2006; pp. 597–603.

Cheng L.C., Wu T.B., Hu C.T. The role of microstructural features in abrasive wear of a D-2 tool steel. J. Mater. Sci. 1988;23:1610–1614. doi: 10.1007/BF01115699. DOI

Nykiel T., Hryniewicz T. Quantitative Approach to Coagulation, Coalescence, and Polygonization of Carbides in the NCWV/D3 Tool Steel. Metall. Mater. Trans. A. 2000;31:2661–2665. doi: 10.1007/s11661-000-0211-2. DOI

Das D., Sarkar R., Dutta A.K., Ray K.K. Influence of sub-zero treatments on fracture toughness of AISI D2 steel. Mater. Sci. Eng. A. 2010;528:589–603. doi: 10.1016/j.msea.2010.09.057. DOI

Rhyim Y.M., Han S.H., Na Y.S., Lee J.H. Effect of Deep Cryogenic Treatment on Carbide Precipitation and Mechanical Properties of Tool Steel. Solid State Phenom. 2006;118:9–14. doi: 10.4028/www.scientific.net/SSP.118.9. DOI

Moscoso M.F.C., Ramos F.D., de Lima Lessa C.R., Cunha P.H.C., Toniolo J.C., Braga Lemos G.V. Effects of Cooling Parameter and Cryogenic Treatment on Microstructure and Fracture Toughness of AISI D2 Tool Steel. J. Mater. Eng. Perform. 2020;29:7929–7939. doi: 10.1007/s11665-020-05285-9. DOI

Ghasemi-Nanesa H., Jahazi M. Simultaneous enhancement of strength and ductility in cryogenically treated AISI D2 steel. Mater. Sci. Eng. A. 2014;598:413–419. doi: 10.1016/j.msea.2014.01.065. DOI

Korade D.N., Ramana K.V., Jagtap K.R., Dhokey N.B. Effect of Deep Cryogenic Treatment on Tribological Behaviour of D2 Tool Steel—An Experimental Investigation. Mater. Today Proc. 2017;4:7665–7673. doi: 10.1016/j.matpr.2017.07.100. DOI

Kara F., Karabatak M., Ayyıldız M., Nas E. Effect of machinability, microstructure and hardness of deep cryogenic treatment in hard turning of AISI D2 steel with ceramic cutting. J. Mater. Res. Technol. 2020;9:969–983. doi: 10.1016/j.jmrt.2019.11.037. DOI

Hradil D., Suchmann P., Dlouhy J. Deep Cryogenic Treatment of the D2 Tool Steel; Proceedings of the 24th IFHTSE CONGRESS 2017—European Conference on Heat Treatment and Surface Engineering—A3TS CONGRESS; Nice, France. 26–29 June 2017.

Mochtar M.A., Putra W.N., Abram M. Effect of tempering temperature and subzero treatment on microstructures, retained austenite, and hardness of AISI D2 tool steel. Mater. Res. Express. 2023;10:056511. doi: 10.1088/2053-1591/acd61b. DOI

Wierszyllowski I. The Influence of Post-quenching Deep Cryogenic Treatment on Tempering Processes and Properties of D2 Tool Steel. Studies of Structure, XRD, Dilatometry, Hardness and Fracture Toughness. Defect Diffus. Forum. 2006;258–260:415–420. doi: 10.4028/www.scientific.net/DDF.258-260.415. DOI

Akıncıoglu S. Investigation of the Effect of Deep Cryogenic Process on the Tribological Properties of X153CrMoV12 Mold Steel. J. Mater. Eng. Perform. 2021;30:2843–2852. doi: 10.1007/s11665-021-05599-2. DOI

Schulz A., Cui C., Steinbacher M., Ümit T., Wunde M., Jung I., Acar S., Nürnberger F., Gerstein G., Herbst S., et al. Effects of Cryogenic Treatment on the Microstructure and Mechanical Properties of High-alloyed Tool Steels. HTM J. Heat Treat. Mater. 2020;75:287–307. doi: 10.3139/105.110422. DOI

Demir E., Tokta I. Effects of cryogenic treatment on residual stresses of AISI D2 tool steel. Kovove Mater. 2018;56:153–161. doi: 10.4149/km_2018_3_153. DOI

Akhbarizadeh A., Javadpour S. Investigating the effect of as-quenched vacancies in the final microstructure of 1.2080 tool steel during the deep cryogenic heat treatment. Mater. Lett. 2013;93:247–250. doi: 10.1016/j.matlet.2012.11.081. DOI

Amini K., Akhbarizadeh A., Javadpour S. Effect of Carbide Distribution on Corrosion Behavior of the Deep Cryogenically Treated 1.2080 Steel. J. Mater. Eng. Perform. 2016;25:365–373. doi: 10.1007/s11665-015-1858-6. DOI

Dhokey N.B., Nirbhavne S. Dry sliding wear of cryotreated multiple tempered D-3 tool steel. J. Mater. Process. Technol. 2009;209:1484–1490. doi: 10.1016/j.jmatprotec.2008.03.069. DOI

Mohan Lal D., Renganarayanan S., Kalanihidi A. Cryogenic treatment to augment wear resistance of tool and die steels. Cryogenics. 2001;14:149–155. doi: 10.1016/S0011-2275(01)00065-0. DOI

Kumar S., Nahraj M., Bongale A., Khedkar N.K. Effect of deep cryogenic treatment on the mechanical properties of AISI D3 tool steel. Int. J. Mat. Eng. Innov. 2019;10:98–113. doi: 10.1504/IJMATEI.2019.099789. DOI

Uygur I., Gerengi H., Arslan Y., Kurtay M. The Effects of Cryogenic Treatment on the Corrosion of AISI D3 Steel. Mater. Res. 2015;18:569–574. doi: 10.1590/1516-1439.349914. DOI

Dixit S.S., Nimbalkar S.R., Kharde R.R. Dry Sliding Wear Analysis of D5 Tool Steel at Different Heat Treatments. Int. J. Eng. Sci. 2013;2:16–26.

Hill H., Huth S., Weber S., Theisen W. Corrosion properties of a plastic mould steel with special focus on the processing route. Mater. Corros. 2011;62:436–443. doi: 10.1002/maco.200905570. DOI

Jurči P., Ptačinová J., Dlouhý I. Cryogenic treatment of Cr-V die steel in liquid helium—Effect on mechanical properties; Proceedings of the 28th International Conference on Metallurgy and Materials METAL 2019; Brno, Czech Republic. 22–24 May 2019; Greensboro, NC, USA: Tanger Ltd.; 2019. pp. 562–568.

Jurči P., Šuštaršič B., Leskovšek V. Fracture Characteristics of the Cr-V Ledeburitic Steel Vanadis 6. Mater. Tehnol. 2010;44:79–86.

Yarasu V., Janka L., Jurči P. Dry sliding wear behaviour of sub-zero processed Cr-V ledeburitic steel Vanadis 6 against three counterparts types. Int. J. Mater. Res. 2020;111:894–907. doi: 10.3139/146.111962. DOI

Yarasu V., Jurci P., Hornik J., Krum S. Optimization of cryogenic treatment to improve the tribological behavior of Vanadis 6 steel using the Taguchi and Grey relation approach. J. Mater. Res. Technol. 2022;18:2945–2962. doi: 10.1016/j.jmrt.2022.03.145. DOI

Yarasu V., Hornik J., Jurci P. Dry Sliding Tribological Behavior of Cryotreated Cr–V Ledeburitic Tool Steel against CuSn6 Counterpart. Steel Res. Int. 2022;93:2200453. doi: 10.1002/srin.202200453. DOI

Gök D.A., Öztürk V. The Influence of Cryogenic Treatment on Mechanical Properties and Microstructures of Vanadis 8 Steel. J. East. Anatol. Sci. Eng. Des. 2020;2:22–32.

Li H., Tong W., Cui J., Zhang H., Chen L., Zuo L. The influence of deep cryogenic treatment on the properties of high-vanadium alloy steel. Mater. Sci. Eng. A. 2016;662:356–362. doi: 10.1016/j.msea.2016.03.039. DOI

Li S., Xie Y., Wu X. Hardness and toughness investigations of deep cryogenic treated cold work die steel. Cryogenics. 2010;50:89–92. doi: 10.1016/j.cryogenics.2009.12.005. DOI

Kara F., Küçük Y., Özbek O., Özbek N.A., Gok M.S., Altas E., Uygur I. Effect of cryogenic treatment on wear behavior of Sleipner cold work tool steel. Tribol. Int. 2023;180:108301. doi: 10.1016/j.triboint.2023.108301. DOI

Wang J., Xiong J., Fan H., Yang H.S., Liu H.H., Shen B.L. Effects of high temperature and cryogenic treatment on the microstructure and abrasion resistance of a high chromium cast iron. J. Mater. Proc. Technol. 2009;209:3236–3240. doi: 10.1016/j.jmatprotec.2008.07.035. DOI

Scandian C., Luz T.S., Pardal J.M., Tavares S.S.M. Failure Analysis of Guides Made of High-Strength AISI D2 Tool Steel. J. Fail. Anal. Preven. 2015;15:789–793. doi: 10.1007/s11668-015-0038-1. DOI

Collins D.N. Deep cryogenic treatment of tool steels—A review. Heat Treat. Met. 1996;23:40–42.

Chen Z., Zhang Y., Yan X., Li J., Li F. Effect of cryogenic and electrolytic passivation treatment on wear resistance of M2 high-speed steel. Int. J. Adv. Manuf. Technol. 2023;127:3049–3060. doi: 10.1007/s00170-023-11639-z. DOI

Dhokey N.B., Hake A., Kadu S., Bhoskar I., Dey G.K. Influence of Cryoprocessing on Mechanism of Carbide Development in Cobalt-Bearing High-Speed Steel (M35) Metall. Mater. Trans. A. 2014;45:1508–1516. doi: 10.1007/s11661-013-2067-2. DOI

Gogte C.L., Peshwe D.R., Paretkar R.K. Influence of Cobalt on the Cryogenically Treated W-Mo-V High Speed Steel. AIP Conf. Proc. 2012;1434:1175–1182. doi: 10.1063/1.4707039. DOI

Gogte C., Peshwe D.R., Likhite A., Lomte S. On the Mechanism of the Effect of Cryogenic Treatment on High Speed Steels. Adv. Mat. Res. 2011;383–390:7138–7142. doi: 10.4028/www.scientific.net/AMR.383-390.7138. DOI

Jovičevič-Klug P., Tegg L., Jovičevič-Klug M., Parmar R., Amati M., Gregoratti L., Almasy L., Cairney J.M., Podgornik B. Understanding carbide evolution and surface chemistry during deep cryogenic treatment in high-alloyed ferrous alloy. Appl. Surf. Sci. 2023;610:155497. doi: 10.1016/j.apsusc.2022.155497. DOI

Firouzdor V., Nejati E., Khomamizadeh F. Effect of deep cryogenic treatment on wear resistance and tool life of M2 HSS drill. J. Mater. Proc. Technol. 2008;206:467–472. doi: 10.1016/j.jmatprotec.2007.12.072. DOI

Savaş A.F., Öktem H., Öztürk B., Uygur İ., Küçük Ö. Energy consumption, mechanical and metallographic properties of cryogenically treated tool steels. Open Chem. 2023;21:20220322. doi: 10.1515/chem-2022-0322. DOI

Xu G., Huang P., Wei Z., Feng Z., Zu G. Microstructural variations and mechanical properties of deep cryogenic treated AISI M35 high speed steel tempered at various temperatures. J. Mater. Res. Technol. 2022;17:3371–3383. doi: 10.1016/j.jmrt.2022.02.083. DOI

Jovičevič-Klug P., Sedlaček M., Jovičevič-Klug M., Podgornik B. Effect of Deep Cryogenic Treatment on Wear and Galling Properties of High-Speed Steels. Materials. 2021;14:7561. doi: 10.3390/ma14247561. PubMed DOI PMC

Marines I., Dominguez G., Baudry G., Vittori J.F., Rathery S., Doucet J.P., Bathias C. Ultrasonic fatigue tests on bearing steel AISI-SAE 52100 at frequency of 20 and 30 kHz. Int. J. Fatigue. 2003;25:1037–1046. doi: 10.1016/S0142-1123(03)00161-0. DOI

Bai L., Yang M., Li J. Numerical Simulation of Electro-Slag Remelting Process Solidification Structure of Cr-Co-Mo-Ni Bearing Steel. Mater. Sci. Forum. 2013;749:96–104. doi: 10.4028/www.scientific.net/MSF.749.96. DOI

Wei X., Zhang X., He W., Li J., Zhang J., Li D., Li S. Influence of Deep Cryogenic Treatment on Microstructural Evolution and Transformation Kinetics Simulation by Finite Element Method of Low-Carbon High-Alloy Martensitic-Bearing Steel. Steel Res. Int. 2022;93:2100785. doi: 10.1002/srin.202100785. DOI

Yıldız E., Özbek N.A. Effect of Cryogenic Treatment and Tempering Temperature on Mechanical and Microstructural Properties of AISI 431 Steel. Int. J. 3d Print. Technol. Digit. Ind. 2022;6:74–82. doi: 10.46519/ij3dptdi.1092720. DOI

Yang Z., Liu Z., Liang J., Yang Z., Sheng G. Elucidating the role of secondary cryogenic treatment on mechanical properties of a martensitic ultra-high strength stainless steel. Mater. Charact. 2021;178:111277. doi: 10.1016/j.matchar.2021.111277. DOI

Nishiyama Z. Martensitic Transformation. 1st ed. Academic Press; New York, NY, USA: 1978.

Dlouhý I., Chlup Z., Hadraba Z. Influence of surface hardening on fracture behaviour of steels. In: Stolař P., editor. Proceedings of the International Conference Heat Treatment and Surface Engineering; Jihlava, Czech Republic. 24–25 November 2009; pp. 111–120. (In Czech)

Schmidt I., Schuchert A. Unlubricated sliding wear of austempered ductile iron. Z. Metall. 1987;78:871–875. doi: 10.1515/ijmr-1987-781208. DOI

Johansson M. Austenitic-Bainitic Ductile Iron. Trans. AFS. 1977;85:117–122.

Hahn G.T., Rosefield A.R. Applications Related Phenomena in Titanium Alloys. American Society for Testing and Materials; Philadelphia, PA, USA: 1968. pp. 5–22. ASTM STP 432.

Putatunda S.K. Fracture toughness of a high carbon and high silicon steel. Mater. Sci. Eng. A. 2001;297:31–43. doi: 10.1016/S0921-5093(00)01272-7. DOI

Zhirafar S., Rezaeia A., Pugh M. Effect of cryogenic treatment on the mechanical properties of 4340 steel. J. Mater. Process. Technol. 2007;186:298–303. doi: 10.1016/j.jmatprotec.2006.12.046. DOI

Holm T., Olsson P., Troell E. Steel and Its Heat Treatments—A Handbook. Swerea IVF; Stockholm, Sweden: 2012.

Zimmerman C., Hall J., McCurdy D., Jamieson E. Comparison of residual stresses from atmosphere and low pressure carburization. Heat Treat. Prog. 2007;7:41–46.

Wang M., Li W., Wu Y., Li S., Cai C., Wen S., Wei Q., Shi Y., Ye F., Chen Z. High-temperature properties and microstructural stability of the AISI H13 hot-work tool steel processed by selective laser melting. Metall. Mater. Trans. B. 2019;50:531–542. doi: 10.1007/s11663-018-1442-1. DOI

Ning A., Yue S., Gao R., Li L., Guo H. Influence of Tempering Time on the Behavior of Large Carbides’ Coarsening in AISI H13 Steel. Metals. 2019;9:1283. doi: 10.3390/met9121283. DOI

Rogal L., Dutkiewicz J., Szklarz Z., Krawiec H., Kot M., Zimowski S. Mechanical properties and corrosion resistance of steel X210CrW12 after semi-solid processing and heat treatment. Mater. Charact. 2014;88:100–110. doi: 10.1016/j.matchar.2013.11.015. DOI

Kawalec M., Krawiec H. Corrosion Resistance of High-Alloyed White Cast Iron. Arch. Metall. Mater. 2015;60:301–303. doi: 10.1515/amm-2015-0048. DOI

Abd El-Aziz K., Zohdy K., Saber D., Sallam H.E.M. Wear and Corrosion Behavior of High-Cr White Cast Iron Alloys in Different Corrosive Media. J. Bio Tribo Corros. 2015;1:25. doi: 10.1007/s40735-015-0026-8. DOI

Tang X.H., Chung R., Li D.Y., Hinckley B., Dolman K. Variations in microstructure of high chromium cast irons and resultant changes in resistance to wear, corrosion and corrosive wear. Wear. 2009;267:116–121. doi: 10.1016/j.wear.2008.11.025. DOI

Tang X.H., Chung R., Pang C.J., Li D.Y., Hinckley B., Dolman K. Microstructure of high (45 wt.%) chromium cast irons and their resistances to wear and corrosion. Wear. 2011;271:1426–1431. doi: 10.1016/j.wear.2010.11.047. DOI

Wiengmoon A., Pearce J.T.H., Chairuangsri T. Relationship between microstructure, hardness and corrosion resistance in 20 wt.%Cr, 27 wt.%Cr and 36 wt.%Cr high chromium cast irons. Mater. Chem. Phys. 2011;125:739–748. doi: 10.1016/j.matchemphys.2010.09.064. DOI

Kulmburg A., Putzgruber E., Korntheurer F., Kaiser E. Beitrag zum Tiefkühlen von Schnellarbeitsstählen. HTM J. Heat Treat. Mater. 1992;47:318–323. doi: 10.1515/htm-1992-470510. (In German) DOI

Berns H., Bröckmann C. Fracture of Hot Formed Ledeburitic Chromium Steels. Eng. Fract. Mech. 1997;58:311–325. doi: 10.1016/S0013-7944(97)00118-5. DOI

Fontalvo G.A., Humer R., Mitterer C., Sammt K., Schemmel I. Microstructural aspects determining the adhesive wear of tool steels. Wear. 2006;260:1028–1034. doi: 10.1016/j.wear.2005.07.001. DOI

Gaard A., Krakhmalev P., Bergström J. Influence of tool steel microstructure on origin of galling initiation and wear mechanisms under dry sliding against a carbon steel sheet. Wear. 2009;267:387–393. doi: 10.1016/j.wear.2008.11.013. DOI

Karlsson P., Gaard A., Krakhmalev P., Bergström J. Galling resistance and wear mechanisms for cold-work tool steels in lubricated sliding against high strength stainless steel sheets. Wear. 2012;286–287:92–97. doi: 10.1016/j.wear.2011.04.002. DOI

Naravade R.H., Gujar U.N., Kharde R.R. Optimization of Cryogenic Treatment on Wear Behaviour of D6 Tool Steel by Using DOE/RSM. Int. J. Eng. Adv. Technol. 2012;2:239–244.

Standard Test Method for Wear Testing with a Pin-On-Disk Apparatus. ASTM International; West Conshohocken, PA, USA: 2000.

Wu J., Wang B., Zhang Y., Liu R., Xia Y., Li G., Xue W. Enhanced wear and corrosion resistance of plasma electrolytic carburized layer on T8 carbon steel. Mat. Chem. Phys. 2016;171:50–56. doi: 10.1016/j.matchemphys.2015.09.047. DOI

Hoyle G. High Speed Steels. Butterworths; London, UK: 1988.

Pellizzari M., Molinari A., Giraldini L. Deep cryogenic treatment of AISI M2 high-speed steel. Int. J. Microstruct. Mater. Prop. 2008;3:383–389. doi: 10.1504/IJMMP.2008.018742. DOI

Bergman F., Hedenqvist P., Hogmark S. The influence of primary carbides and test parameters on abrasive and erosive wear of selected PM high speed steels. Tribol. Int. 1997;30:183–191. doi: 10.1016/S0301-679X(96)00040-0. DOI

Badisch E., Mitterer C. Abrasive wear of high speed steels: Influence of abrasive particles and primary carbides on wear resistance. Tribol. Int. 2003;36:765–770. doi: 10.1016/S0301-679X(03)00058-6. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace