Cryogenic Treatment of Martensitic Steels: Microstructural Fundamentals and Implications for Mechanical Properties and Wear and Corrosion Performance
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
38591379
PubMed Central
PMC10856112
DOI
10.3390/ma17030548
PII: ma17030548
Knihovny.cz E-zdroje
- Klíčová slova
- carbides, corrosion performance, cryogenic treatment, martensite, mechanical properties, microstructure, retained austenite, steels, wear performance,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Conventional heat treatment is not capable of converting a sufficient amount of retained austenite into martensite in high-carbon or high-carbon and high-alloyed iron alloys. Cryogenic treatment induces the following alterations in the microstructures: (i) a considerable reduction in the retained austenite amount, (ii) formation of refined martensite coupled with an increased number of lattice defects, such as dislocations and twins, (iii) changes in the precipitation kinetics of nano-sized transient carbides during tempering, and (iv) an increase in the number of small globular carbides. These microstructural alterations are reflected in mechanical property improvements and better dimensional stability. A common consequence of cryogenic treatment is a significant increase in the wear resistance of steels. The current review deals with all of the mentioned microstructural changes as well as the variations in strength, toughness, wear performance, and corrosion resistance for a variety of iron alloys, such as carburising steels, hot work tool steels, bearing and eutectoid steels, and high-carbon and high-alloyed ledeburitic cold work tool steels.
Zobrazit více v PubMed
Reitz W., Pendray J. Cryoprocessing of Materials: A Review of Current Status. Mater. Manuf. Proc. 2001;16:829–840. doi: 10.1081/AMP-100108702. DOI
Senthilkumar D., Rajendran I. A research review on deep cryogenic treatment of steels. Int. J. Mater. Struct. Integr. 2014;8:169–184. doi: 10.1504/IJMSI.2014.064784. DOI
Carlson E.A. ASM Handbook. 10th ed. Volume 4. ASM International; Metals Park, OH, USA: 1990. Cold treating and cryogenic treatment of steel; pp. 203–206. Heat Treating.
Ray K.K., Das D. Improved wear resistance of steels by cryotreatment: The current state of understanding. Mater. Sci. Technol. 2017;33:340–354. doi: 10.1080/02670836.2016.1206292. DOI
Akincioğlu S., Gökkaya H., Uygur I. A review of cryogenic treatment on cutting tools. Int. J. Adv. Manuf. Technol. 2015;78:1609–1627. doi: 10.1007/s00170-014-6755-x. DOI
Sweeney T.P. Deep cryogenics: The great cold debate. Heat Treat. 1986;2:28–33.
Albert M. Cutting tools in the deep freeze. Mod. Mach. Shop. 1992;64:54–61.
[(accessed on 20 May 2022)]. Available online: http://www.victor-aviation.com/Cryogenic_Processing_Technology.php.
With CRYOFLEX® Freezers from Linde. Linde AG; Dublin, Ireland: 2017. Freezing to Perfection.
Yan X.G., Li D.Y. Effects of the sub-zero treatment condition on microstructure, mechanical behavior and wear resistance of W9Mo3Cr4V high speed steel. Wear. 2013;302:854–862. doi: 10.1016/j.wear.2012.12.037. DOI
Kumar S., Nagraj M., Bongale A., Khedkar N. Deep Cryogenic Treatment of AISI M2 Tool Steel and Optimisation of Its Wear Characteristics Using Taguchi’s Approach. Arab. J. Sci. Eng. 2018;43:4917–4929. doi: 10.1007/s13369-018-3242-y. DOI
Das D., Dutta A.K., Ray K.K. Sub-zero treatments of AISI D2 steel: Part I. Microstructure and hardness. Mater. Sci. Eng. 2010;A527:2182–2193. doi: 10.1016/j.msea.2009.10.070. DOI
Thornton R., Slatter T., Ghadbeigi H. Effects of deep cryogenic treatment on the dry sliding wear performance of ferrous alloys. Wear. 2013;305:177–191. doi: 10.1016/j.wear.2013.06.005. DOI
Akhbarizadeh A., Amini K., Javadpour S. Effect of simultaneous magnetic field and deep cryogenic heat treatment on the microstructure of 1.2080 tool steel. Mater. Des. 2012;35:484–490. doi: 10.1016/j.matdes.2011.09.015. DOI
Kusy M., Rizekova-Trnkova L., Krajcovic J., Dlouhy I., Jurči P. Can Sub-Zero Treatment at -75 degrees C Bring Any Benefits to Tools Manufacturing? Materials. 2019;12:3827. doi: 10.3390/ma12233827. PubMed DOI PMC
Idayan A., Gnanavelbabu A., Rajkumar K. Influence of Deep Cryogenic Treatment on the Mechanical Properties of AISI 440C Bearing Steel. Procedia Eng. 2014;97:1683–1691. doi: 10.1016/j.proeng.2014.12.319. DOI
Li S., Yuan X., Jiang W., Sun H., Li J., Zhao K., Yang M. Effects of heat treatment influencing factors on microstructure and mechanical properties of a low-carbon martensitic stainless bearing steel. Mater. Sci. Eng. 2014;A605:229–235. doi: 10.1016/j.msea.2014.03.061. DOI
Bensely A., Prabhakaran A., Mohan Lal D., Nagarajan G. Enhancing the wear resistance of case carburized steel (En 353) by cryogenic treatment. Cryogenics. 2006;45:747–754. doi: 10.1016/j.cryogenics.2005.10.004. DOI
Shinde T. Influence of carbide particle size on the wear performance of cryogenically treated H13 die steel. Surf. Eng. 2020;37:1206–1214. doi: 10.1080/02670844.2019.1701858. DOI
Lu X.H., Li W., Wang C.L., Zhao H.S., Jin X.J. Effects of Sub-zero Celsius Treatment and Tempering on the Stability of Retained Austenite in Bearing Steel. Acta Metall. Sin. (Engl. Lett.) 2015;28:787–792. doi: 10.1007/s40195-015-0264-2. DOI
Ďurica J., Ptačinová J., Dománková M., Čaplovič L., Čaplovičová M., Hrušovská L., Malovcová V., Jurči P. Changes in microstructure of ledeburitic tool steel due to vacuum austenitizing and quenching, sub-zero treatments at −140 °C and tempering. Vacuum. 2019;170:108977. doi: 10.1016/j.vacuum.2019.108977. DOI
Katoch S., Singh V., Sehgal R. Mechanical Properties and Microstructure Evaluation of Differently Cryogenically Treated AISI H11 Steel. Int. J. Steel Struct. 2019;19:1381–1392. doi: 10.1007/s13296-019-00216-4. DOI
Katoch S., Singh V., Sehgal R. Characterisation of microstructure and mechanical properties of differently cryogenically treated hot die steel AISI-H11. Int. J. Mater. Eng. Innov. 2016;7:285–303. doi: 10.1504/IJMATEI.2016.084636. DOI
Sri Siva S., Shunmuga Priyan M. Residual Stress and Wear Studies of Deep Cryogenically Treated SAE 52100 Bearing Steel. Adv. Mater. Proc. 2019;4:48–54. doi: 10.5185/amp.2019.1430. DOI
Amini K., Akhbarizadeh A., Javadpour S. Investigating the effect of the quench environment on the final microstructure and wear behaviour of 1.2080 tool steel after deep cryogenic heat treatment. Mater. Des. 2013;45:316–322. doi: 10.1016/j.matdes.2012.08.006. DOI
Das D., Dutta A.K., Toppo V., Ray K.K. Effect of deep cryogenic treatment on the carbide precipitation and tribological behavior of D2 steel. Mater. Manuf. Process. 2007;22:474–480. doi: 10.1080/10426910701235934. DOI
Das D., Dutta A.K., Ray K.K. On the enhancement of wear resistance of tool steels by cryogenic treatment. Philos. Mag. Lett. 2008;88:801–811. doi: 10.1080/09500830802380788. DOI
Sobotová J., Jurči P., Dlouhý I. The effect of sub-zero treatment on microstructure, fracture toughness, and wear resistance of Vanadis 6 tool steel. Mater. Sci. Eng. 2016;A652:192–204. doi: 10.1016/j.msea.2015.11.078. DOI
Das D., Dutta A.K., Ray K.K. Optimization of the duration of cryogenic processing to maximize wear resistance of AISI D2 steel. Cryogenics. 2009;49:176–184. doi: 10.1016/j.cryogenics.2009.01.002. DOI
Jurči P., Dománková M., Čaplovič L., Ptačinová J., Sobotová J., Salabová P., Prikner O., Šuštaršič B., Jenko D. Microstructure and hardness of sub-zero treated and no tempered P/M Vanadis 6 ledeburitic tool steel. Vacuum. 2015;111:92–101. doi: 10.1016/j.vacuum.2014.10.004. DOI
Qiao X., Han L., Zhang W., Gu J. Thermal Stability of Retained Austenite in High-carbon Steels during Cryogenic and Tempering Treatments. ISIJ Int. 2016;56:140–147. doi: 10.2355/isijinternational.ISIJINT-2015-248. DOI
Berns H. Restaustenit in ledeburitischen Chromstählen und seine Umwandlung durch Kaltumformen, Tiefkühlen und Anlassen. HTM J. Heat Treatm. Mater. 1974;29:236–247. doi: 10.1515/htm-1974-290402. DOI
Stratton P., Graf M. The effect of deep cold induced nano-carbides on the wear of case hardened components. Cryogenics. 2009;49:346–349. doi: 10.1016/j.cryogenics.2009.03.007. DOI
Zurecki Z. Cryogenic Quenching of Steel Revisited. In: Herring D., Hill R., editors. Proceedings of the 23rd Heat Treating Society Conference; Pittsburgh, PA, USA. 25–28 September 2005; Metals Park, OH, USA: ASM International; 2005. pp. 106–114.
Ptačinová J., Ďurica J., Jurči P., Kusý M. Influence of sub-zero treatment in liquid helium and tempering on the microstructure of tool steel Vanadis 6; Proceedings of the 28th International Conference on Metallurgy and Materials METAL 2019; Brno, Czech Republic. 22–24 May 2019; Greensboro, NC, USA: Tanger Ltd.; 2019. pp. 569–574.
Jurči P., Bartkowska A., Hudáková M., Dománková M., Čaplovičová M., Bartkowski D. Effect of Sub-zero Treatments and Tempering on Corrosion Behaviour of Vanadis 6 tool steel. Materials. 2021;14:3759. doi: 10.3390/ma14133759. PubMed DOI PMC
Yugandhar Y., Krishnan P.K., Bhaskar Rao C.V., Kalidas R. Cryogenic Treatment and it’s Effect on Tool Steel. In: Fredriksson J.G., Johansson M., Kotik O., Thuvander F., editors. Proceedings of the 6th International Tooling Conference; Karlstad, Sweden. 10–13 September 2002; pp. 671–684.
Stratton P.F. Optimising nano-carbide precipitation in tool steels. Mater. Sci. Eng. A. 2007;449–451:809–812. doi: 10.1016/j.msea.2006.01.162. DOI
Sekar K.S., Murugesan S.N. Enhancement of Wear Resistance of D-3 Piercing Punches by Applying Cryogenic Treatment: Field and Laboratory Investigations. Trans. FAMENA. 2018;XLII-3:71–86. doi: 10.21278/TOF.42305. DOI
Arslan Y., Özdemir A. Punch structure, punch wear and cut profiles of AISI 304 stainless steel sheet blanks manufactured using cryogenically treated AISI D3 tool steel punches. Int. J. Adv. Manuf. Technol. 2016;87:587–599. doi: 10.1007/s00170-016-8515-6. DOI
Stratton P.F. Process optimisation for deep cold treatment of tool steels. In: Smoljan B., Jager H., Leskovsek V., editors. Proceedings of the 1st International Conference on Heat Treatment and Surface Engineering of Tools and Dies; Pula, Croatia. 8–11 June 2005; pp. 11–19.
Singla A.K., Singh J., Sharma V.S. Processing of materials at cryogenic temperature and its implications in manufacturing: A review. Mater. Manuf. Proc. 2018;33:1603–1640. doi: 10.1080/10426914.2018.1424908. DOI
Cohen M. Retained Austenite. Trans. ASM. 1949;41:35–94.
Gordon P., Cohen M. The Transformation of Retained Austenite in High Speed Steel at Sub-Atmospheric Temperatures. Trans. ASM. 1942;30:569–587.
Gunes I., Cicek A., Aslantas K., Kara F. Effect of Deep Cryogenic Treatment on Wear Resistance of AISI 52100 Bearing Steel. Trans. Indian Inst. Met. 2014;67:909–917. doi: 10.1007/s12666-014-0417-4. DOI
Amini K., Araghi A., Akhbarizadeh A. Effect of Deep Cryogenic Heat Treatment on the Wear Behavior of Carburized DIN 1.7131 Grade Steel. Acta Metall. Sin. (Engl. Lett.) 2015;28:348–353. doi: 10.1007/s40195-015-0204-1. DOI
Bensely A., Senthilkumar D., Mohan Lal D., Nagarajan G., Rajadurai A. Effect of cryogenic treatment on tensile behaviour of case carburized steel-815M17. Mater. Charact. 2007;58:485–491. doi: 10.1016/j.matchar.2006.06.019. DOI
Cicek A., Kara F., Kıvak T., Ekici E., Uygur I. Effects of Deep Cryogenic Treatment on the Wear Resistance and Mechanical Properties of AISI H13 Hot-Work Tool Steel. J. Mater. Eng. Perform. 2015;24:4431–4439. doi: 10.1007/s11665-015-1712-x. DOI
Bhavar V., Khot S., Kattire P., Mehta M., Singh R.K.P. Effect of Deep Cryogenic Treatment (DCT) on AISI H13 Tool Steel; Proceedings of the 28th ASM Heat Treating Society Conference; Detroit, MI, USA. 20–22 October 2015; pp. 383–389.
Molinari A., Pellizzari M., Gialanella S., Straffelini G., Stiasny K.H. Effect of deep cryogenic treatment on the mechanical properties of tool steels. J. Mater. Process. Technol. 2001;118:350–355. doi: 10.1016/S0924-0136(01)00973-6. DOI
Shinde T., Dhokey N.B. Influence of carbide density on surface roughness and quasi-stable wear behaviour of H13 die steel. Surf. Eng. 2017;33:944–952. doi: 10.1080/02670844.2017.1312739. DOI
Shinde T. Failure analysis of cryogenically treated H13 specimen in rotating bending fatigue. Eng. Fail. Anal. 2020;113:104535. doi: 10.1016/j.engfailanal.2020.104535. DOI
Das D., Ray K.K. Structure-property correlation of sub-zero treated AISI D2 steel. Mater. Sci. Eng. 2012;A541:45–60. doi: 10.1016/j.msea.2012.01.130. DOI
Das D., Ray K.K., Dutta A.K. Influence of temperature of sub-zero treatments on the wear behaviour of die steel. Wear. 2009;267:1361–1370. doi: 10.1016/j.wear.2008.11.029. DOI
Das D., Dutta A.K., Ray K.K. Influence of varied cryo-treatment on the wear behaviour of AISI D2 steel. Wear. 2009;266:297–309. doi: 10.1016/j.wear.2008.07.001. DOI
Das D., Dutta A.K., Ray K.K. Sub-zero treatments of AISI D2 steel: Part II. Wear behaviour. Mater. Sci. Eng. A. 2010;527:2194–2206. doi: 10.1016/j.msea.2009.10.071. DOI
Jurči P., Kusý M., Ptačinová J., Kuracina V., Priknerová P. Long-term sub-zero treatment of P/M Vanadis 6 ledeburitic tool steel-a preliminary study. Manuf. Technol. 2015;15:41–47. doi: 10.21062/ujep/x.2015/a/1213-2489/MT/15/1/41. DOI
Ptačinová J., Sedlická V., Hudáková M., Dlouhý I., Jurči P. Microstructure Toughness relationships in sub-zero treated and tempered Vanadis 6 steel compared to conventional treatment. Mater. Sci. Eng. A. 2017;702:241–258. doi: 10.1016/j.msea.2017.07.007. DOI
Jurči P., Ďurica J., Dlouhý I., Horník J., Planieta R., Kralovič D. Application of −140 °C Sub-Zero Treatment for Cr-V Ledeburitic Steel Service Performance Improvement. Metall. Mater. Trans. A. 2019;50:2413–2434. doi: 10.1007/s11661-019-05180-6. DOI
Jurči P., Sobotová J., Salabová P., Prikner O., Šuštaršič B., Jenko D. Subzero treatment of P/M Vanadis 6 ledeburitic tool steel. Int. Heat Treat. Surf. Eng. 2013;7:125–128. doi: 10.1179/1749514813Z.00000000073. DOI
Jovičevič-Klug P., Jovičevič-Klug M., Podgornik B. Effectiveness of deep cryogenic treatment on carbide precipitation. J. Mater. Res. Technol. 2020;9:13014–13026. doi: 10.1016/j.jmrt.2020.09.063. DOI
Fantineli D.G., Parcianello C.T., Rosendo T.S., Reguly A., Marco D., Tier M.D. Effect of heat and cryogenic treatment on wear and toughness of HSS AISI M2. J. Mater. Res. Technol. 2020;9:12354–12363. doi: 10.1016/j.jmrt.2020.08.090. DOI
Leskovšek V., Kalin M., Vižintin J. Influence of deep-cryogenic treatment on wear resistance of vacuum heat-treated HSS. Vacuum. 2006;80:507–518. doi: 10.1016/j.vacuum.2005.08.023. DOI
Yun D., Lin X., Xiao H. Deep Cryogenic Treatment of High-Speed Steel and Its Mechanism. Heat Treat. Met. 1988;3:55–59. doi: 10.1179/174951508X358482. DOI
Li J., Yan X., Liang X., Guo H., Li D.Y. Influence of different cryogenic treatments on high-temperature wear behavior of M2 steel. Wear. 2017;376–377:1112–1121. doi: 10.1016/j.wear.2016.11.041. DOI
Pellizzari M., Caliskanoglu D., Fernandez A., Barbero J.I., Pena B., Uemit T., Pizzaro Sanz R., Elvira Equizabal R., Alava L.A. Influence of different deep cryogenic treatment routes on the properties of high speed steel. HTM J. Heat Treat. Mater. 2012;67:111–117. doi: 10.3139/105.110141. DOI
Jovičevič-Klug P., Puš G., Jovičevič-Klug M., Žužek B., Podgornik B. Influence of heat treatment parameters on effectiveness of deep cryogenic treatment on properties of high-speed steels. Mater. Sci. Eng. 2022;A829:142157. doi: 10.1016/j.msea.2021.142157. DOI
Prieto G., Perez Ipiña J.E., Tuckart W.R. Cryogenic treatments on AISI 420 stainless steel: Microstructure and mechanical properties. Mater. Sci. Eng. A. 2014;605:236–243. doi: 10.1016/j.msea.2014.03.059. DOI
Li S., Xiao M., Ye G., Zhao K., Yang M. Effects of deep cryogenic treatment on microstructural evolution and alloy phases precipitation of a new low carbon martensitic stainless bearing steel during aging. Mater. Sci. Eng. A. 2018;732:167–177. doi: 10.1016/j.msea.2018.07.012. DOI
Li D.H., He W.C., Zhang X., Xiao M.G., Li S.H., Zhao K.Y., Yang M.S. Effects of traditional heat treatment and a novel deep cryogenic treatment on microstructure and mechanical properties of low-carbon high-alloy martensitic bearing steel. J. Iron Steel Res. Int. 2021;28:370–382. doi: 10.1007/s42243-020-00527-5. DOI
El Mehtedi M., Ricci P., Drudi L., El Mohtadi S., Cabibbo M., Spigarelli S. Analysis of the effect of Deep Cryogenic Treatment on the hardness and microstructure of X30 CrMoN 15 1 steel. Mater. Des. 2012;33:136–144. doi: 10.1016/j.matdes.2011.07.030. DOI
Darwin J.D., Mohan Lal D., Nagarajan G. Optimization of cryogenic treatment to maximize the wear resistance of 18% Cr martensitic stainless steel by Taguchi method. J. Mater. Proc. Technol. 2008;195:241–247. doi: 10.1016/j.jmatprotec.2007.05.005. DOI
Darwin J.D., Mohan Lal D., Nagarajan G. Optimization of cryogenic treatment to maximize the wear resistance of Chrome Silicon spring steel by Taguchi method. Int. J. Mat. Sci. 2007;2:17–28.
Arockia Jaswin M., Mohan Lal D. Optimization of the Cryogenic Treatment Process for EN Valve Steel using the Grey-Taguchi Method. Mater. Manuf. Process. 2010;25:842–850. doi: 10.1080/10426910903536766. DOI
Siva S.R., Mohan Lal D., Arockia Jaswin M. Optimization of Deep Cryogenic Treatment Process for 100Cr6 Bearing Steel using the Grey-Taguchi Method. Tribol. Trans. 2012;55:854–862. doi: 10.1080/10402004.2012.720002. DOI
Popandopulo A.N., Zhukova L.T. Transformation in High Speed Steels during Cold Treatment. Met. Sci. Heat Treat. 1980;22:708–710. doi: 10.1007/BF00700561. DOI
Nanesa H.G., Touziane H., Jahazi M. Influence of Cryogenic Process Parameters on Microstructure and Hardness Evolution of AISI D2 Tool Steel. Int. J. Adv. Manuf. Technol. 2016;85:881–890. doi: 10.1007/s00170-015-7980-7. DOI
Akhbarizadeh A., Shafyei A., Golozar M.A. Effects of cryogenic treatment on wear behaviour of D6 tool steel. Mater. Des. 2009;30:3259–3264. doi: 10.1016/j.matdes.2008.11.016. DOI
Oppenkowski A., Weber S., Theisen W. Evaluation of factors influencing deep cryogenic treatment that affect the properties of tool steels. J. Mater. Proc. Technol. 2010;210:1949–1955. doi: 10.1016/j.jmatprotec.2010.07.007. DOI
Amini K., Nategh S., Shafyei A. Influence of different cryo-treatments on tribological behavior of 80CrMo12 5 cold work tool steel. Mater. Des. 2010;31:4666–4675. doi: 10.1016/j.matdes.2010.05.028. DOI
Collins D.N., Dormer J. Deep Cryogenic Treatment of a D2 Cold-Work Tool Steel. Heat Treat. Met. 1997;24:71–74. doi: 10.1179/174951508X446376. DOI
Cheng L., Brakman C.M., Korevaar B.M., Mittemeijer E.J. The Tempering of Iron-Carbon Martensite; Dilatometric and Calorimetric Analysis. Metall. Trans. A. 1988;19:2415–2426. doi: 10.1007/BF02645469. DOI
Gill S.S., Singh H., Singh R., Singh J. Cryoprocessing of Cutting Tool Materials—A Review. Int. J. Adv. Manuf. Technol. 2010;48:175–192. doi: 10.1007/s00170-009-2263-9. DOI
Jovičevič-Klug P., Podgornik B. Review on the Effect of Deep Cryogenic Treatment of Metallic Materials in Automotive Applications. Metals. 2020;10:434. doi: 10.3390/met10040434. DOI
Ozogu A.N., Chukwurah N.C., Muhammed Z.A., Olabimtan O.H., Oddy Obi I.C., Anyim P.B., Suleiman M.A. Application of Cryogenics Treatment as an Engineering Tool for Textile Apparels and Metals: A Review. Int. J. Innov. Sci. Res. 2018;7:1292–1297.
Kalsi N.S., Sehgal R., Sharma V.S. Cryogenic Treatment of Tool Materials: A Review. Mater. Manuf. Process. 2010;25:1077–1100. doi: 10.1080/10426911003720862. DOI
Baldissera P., Delprete C. Deep Cryogenic Treatment: A Bibliographic Review. Open Mech. Eng. J. 2008;2:1–11. doi: 10.2174/1874155X00802010001. DOI
Sonar T., Lomte S., Gogte C. Cryogenic Treatment of Metal—A Review. Mater. Today Proc. 2018;5:25219–25228. doi: 10.1016/j.matpr.2018.10.324. DOI
Razavykia A., Delprete C., Baldissera P. Correlation between Microstructural Alteration, Mechanical Properties and Manufacturability after Cryogenic Treatment: A Review. Materials. 2019;12:3302. doi: 10.3390/ma12203302. PubMed DOI PMC
Vengatesh M., Srivignesh R., Balaji P.T., Karthik N.R. Review on Cryogenic Treatment of Steels. Int. J. Eng. Res. Technol. 2016;3:417–422.
Gill S.S., Singh J., Singh R., Singh H. Metallurgical principles of cryogenically treated tool steels—A review on the current state of science. Int. J. Adv. Manuf. Technol. 2011;54:59–82. doi: 10.1007/s00170-010-2935-5. DOI
Singh G., Pandey K.N. Effect of cryogenic treatment on properties of materials: A review. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2022;236:1758–1773. doi: 10.1177/09544089221090189. DOI
Gao Q., Jiang X., Sun H., Fang Y., Mo D., Li X., Shu R. Effect mechanism of cryogenic treatment on ferroalloy and nonferrous alloy and their weldments: A review. Mater. Today Commun. 2022;33:104830. doi: 10.1016/j.mtcomm.2022.104830. DOI
Kalia S. Cryogenic Processing: A Study of Materials at Low Temperatures. J. Low Temp. Phys. 2010;158:934–945. doi: 10.1007/s10909-009-0058-x. DOI
Amini K., Akhbarizadeh A., Javadpour S. Cryogenic Heat Treatment of Ferrous Materials—A Review of the Current State. Metall. Res. Technol. 2016;113:611. doi: 10.1051/metal/2016049. DOI
Totten G.E. Steel Heat Treatment Handbook. 2nd ed. CRC Press; Taylor and Francis; Boca Raton, FL, USA: 2007. 832p
Kula P., Dybowski K., Lipa S., Januszewicz B., Pietrasik R., Atraszkiewicz R., Wolowiec E. Effect of the Content of Retained Austenite and Grain Size on the Fatigue Bending Strength of Steels Carburized in a Low-pressure Atmosphere. Met. Sci. Heat Treat. 2014;56:440–443. doi: 10.1007/s11041-014-9778-x. DOI
Villa M., Somers M.A.J. Cryogenic treatment of an AISI D2 steel: The role of isothermal martensite formation and “martensite conditioning. Cryogenics. 2020;110:103131. doi: 10.1016/j.cryogenics.2020.103131. DOI
Muro P., Gimenez S., Iturriza I. Sintering behaviour and fracture toughness characterization of D2 matrix tool steel, comparison with wrought and PM D2. Scr. Mater. 2002;46:369–373. doi: 10.1016/S1359-6462(01)01253-2. DOI
Picas O., Cuadrado N., Casellas D., Goez A., Llanes L. Microstructural effects on the fatigue crack nucleation in cold work tool steels. Procedia Eng. 2010;2:1777–1785. doi: 10.1016/j.proeng.2010.03.191. DOI
Večko Pirtovšek T., Kugler G., Godec M., Tercelj M. Three Important Points that Relate to Improving the Hot Workability of Ledeburitic Tool Steels. Metall. Mater. Trans. A. 2012;43:3797–3808. doi: 10.1007/s11661-012-1195-4. DOI
Bin Abdul Rahim M.A.S., Bin Minhat M., Binti Hussein N.I.S., Bin Salleh M.S.A. A comprehensive review on cold work of AISI D2 tool steel. Metall. Res. Technol. 2017;115:104. doi: 10.1051/metal/2017048. DOI
Večko Pirtovšek T., Kugler G., Terčelj M. The behaviour of the carbides of ledeburitic AISI D2 tool steel during multiple hot deformation cycles. Mater. Charact. 2013;83:97–108. doi: 10.1016/j.matchar.2013.06.008. DOI
Ghasemi N.H., Boulgakoff J., Jahazi M. Influence of prior cold deformation on microstructure evolution of AISI D2 tool steel after hardening heat treatment. J. Manuf. Process. 2016;22:115–119. doi: 10.1016/j.jmapro.2016.02.002. DOI
Singh K., Khatirkar R.K., Sapate S.G. Microstructure evolution and abrasive wear behavior of D2 steel. Wear. 2015;328–329:206–216. doi: 10.1016/j.wear.2015.02.019. DOI
Torkamani H., Raygan S., Rassizadehghani J. Comparing microstructure and mechanical properties of AISI D2 steel after bright hardening and oil quenching. Mater. Des. 2014;54:1049–1055. doi: 10.1016/j.matdes.2013.09.043. DOI
Wilmes S., Kientopf G. Carbide Dissolution Rate and Carbide Contents in Usual High Alloyed Tool Steels at Austenitizing Temperatures between 900 °C and 1250 °C; Proceedings of the 6th International Tooling Conference; Karlstad, Sweden. 10–13 September 2002; pp. 533–547.
Kheirandish S., Saghafian H., Hedjazi J., Momeni M. Effect of Heat Treatment on Microstructure of Modified Cast AISI D3 Cold Work Tool Steel. J. Iron Steel Res. Int. 2010;17:40–45. doi: 10.1016/S1006-706X(10)60140-9. DOI
Srivatsa K., Srinivas P., Balachandran G., Balasubramanian V. Improvement of impact toughness by modified hot working and heat treatment in 13%Cr martensitic stainless steel. Mater. Sci. Eng. A. 2016;677:240–251. doi: 10.1016/j.msea.2016.09.045. DOI
Nykiel T., Hryniewicz T. Transformations of Carbides During Tempering of D3 Tool Steel. J. Mater. Eng. Perform. 2014;23:2050–2054. doi: 10.1007/s11665-014-0979-7. DOI
Bayer A.M., Becherer B.A., Vasco T. High-speed tool steels. In: Lampman S.R., Zorc T.B., Frissell H.J., editors. Machining. Volume 16. ASM International; Cleveland, OH, USA: 1989. pp. 51–59. ASM, Handbook.
Rong W., Andrén H.O., Wisell H., Dunlop G.L. The role of alloy composition in the precipitation behaviour of high speed steels. Acta Metall. Mater. 1992;40:1727–1738. doi: 10.1016/0956-7151(92)90116-V. DOI
Davis J.R. Wrought high-speed tool steels. In: Davis J.R., editor. ASM Specialty Handbook: Tool Materials. ASM International; Cleveland, OH, USA: 1995. pp. 10–21.
Da Silva F.J., Franco S.D., Machado A.R., Ezugwu E.O., Souza A.M., Jr. Performance of cryogenically treated HSS tools. Wear. 2006;261:674–685. doi: 10.1016/j.wear.2006.01.017. DOI
Gill S.S., Singh J., Singh R., Harpreet Singh H. Effect of Cryogenic Treatment on AISI M2 High Speed Steel: Metallurgical and Mechanical Characterization. J. Mater. Eng. Perform. 2012;21:1320–1326. doi: 10.1007/s11665-011-0032-z. DOI
Jurči P., Dománková M., Hudáková M., Ptačinová J., Pašák M., Palček P. Characterization of microstructure and tempering response of conventionally quenched, short- and long-time sub-zero treated PM Vanadis 6 ledeburitic tool steel. Mater. Charact. 2017;134:398–415. doi: 10.1016/j.matchar.2017.10.029. DOI
Jandová D., Šuchmann P., Nižňanská J. Microstructure of Tool Steel X37CrMoV5 after Cryogenic Treatment and its Effect on Wear Resistance. Key Eng. Mater. 2015;647:23–37. doi: 10.4028/www.scientific.net/KEM.647.23. DOI
Pérez M., Rodríguez C., Belzunce F.J. The use of cryogenic thermal treatments to increase the fracture toughness of a hot work tool steel used to make forging dies. Procedia Mater. Sci. 2014;3:604–609. doi: 10.1016/j.mspro.2014.06.100. DOI
Gavriljuk V.G., Theisen W., Sirosh V.V., Polshin E.V., Kortmann A., Mogilny G.S., Petrov Y.N., Tarusin Y.V. Low-temperature martensitic transformation in tool steels in relation to their deep cryogenic treatment. Acta Mater. 2013;61:1705–1715. doi: 10.1016/j.actamat.2012.11.045. DOI
Meng F., Tagashira K., Azuma R., Sohma H. Role of Eta-carbide Precipitation’s in the Wear Resistance Improvements of Fe-12Cr-Mo-V-1.4C Tool Steel by Cryogenic Treatment. ISIJ Int. 1994;34:205–210. doi: 10.2355/isijinternational.34.205. DOI
Pellizzari M. Influence of Deep Cryogenic Treatment on the Properties of Conventional and PM High Speed Steels. Metall. Ital. 2008;9:17–22.
Katoch S., Sehgal R., Singh V. Effect of cryogenic treatment on the tribological behaviour of H11 hot die steel dry sliding against D3 steel. Tribol.–Mater. Surf. Interfaces. 2016;10:185–195. doi: 10.1080/17515831.2016.1263030. DOI
Krauss G. Martensitic Structure. In: Colás R., Totten G.E., editors. Encyclopedia of Iron, Steel, and Their Alloys. Taylor & Francis; Abingdon, UK: 2015. pp. 2182–2187.
Krauss G. Martensite in steel: Strength and structure. Mater. Sci. Eng. A. 1999;273–275:40–57. doi: 10.1016/S0921-5093(99)00288-9. DOI
Li S., Guo H., Li J., Li Z., Li J. Carbides precipitation and kinetics of H13 steel subjected to deep cryogenic treatment. Mater. Sci. Technol. 2022;38:1376–1389. doi: 10.1080/02670836.2022.2079862. DOI
Mohanty O.N. On the stabilization of retained austenite: Mechanism and kinetics. Mater. Sci. Eng. 1995;B32:267–278. doi: 10.1016/0921-5107(95)03017-4. DOI
Chen W., He X., Yu W., Wang M., Yao K. Microstructure, Hardness, and Tensile Properties of Vacuum Carburizing Gear Steel. Metals. 2021;11:300. doi: 10.3390/met11020300. DOI
Andrews K.W. Empirical Formulae for Calculation of Some Transformation Temperatures. J. Iron Steel Inst. 1965;203:721–727.
Steven W., Haynes A.G. The Temperature of Formation of Martensite and Bainite in Low Alloy Steels. J. Iron Steel Inst. 1956;183:349–359.
Kung C.Y., Rayment J.J. An Examination of the Validity of Existing Empirical Formulae for the Calculation of ms Temperature. Metall. Trans. A. 1982;13:328–331. doi: 10.1007/BF02643327. DOI
Morito S., Nishikawa J., Maki T. Dislocation Density within Lath Martensite in Fe-C and Fe-Ni Alloys. ISIJ Int. 2003;43:1475–1477. doi: 10.2355/isijinternational.43.1475. DOI
Lu Y., Yu H., Sisson R.D., Jr. The effect of carbon content on the c/a ratio of as-quenched martensite in Fe-C alloys. Mater. Sci. Eng. A. 2017;700:592–597. doi: 10.1016/j.msea.2017.05.094. DOI
Lee J.S. Characteristics of vanadium alloyed carbonitrided steel for rolling bearing applications. J. ASTM Int. 2007;3:JAI100422. doi: 10.1520/JAI100422. DOI
Geijselaers H.J.M., Perdahciouglu E.S. Mechanically induced martensitic transformation as a stress-driven process. Scr. Mater. 2009;60:29–31. doi: 10.1016/j.scriptamat.2008.08.043. DOI
Stickels C.A., Peters C.R. Compressive strain-induced austenite transformation in 52100 steel. Metall. Mater. Trans. A. 1977;8:1193–1195. doi: 10.1007/BF02667406. DOI
Bhadeshia H.K.D.H. Steels for bearings. Prog. Mater. Sci. 2012;57:268–435. doi: 10.1016/j.pmatsci.2011.06.002. DOI
Luty W. Influence of heat treatment on the dimensional stability of bearing rings of steel 100Cr6 and 100MnCr6 at room temperature and at 150 °C. HTM J. Heat Treatm. Mater. 1972;27:27–33. doi: 10.1515/htm-1972-270108. DOI
Christ H.J., Sommer C., Mughrabi H., Voskamp A., Beswick J., Hengerer F. Fatigue behaviour of three variants of the roller bearing steel SAE 52100. Fatigue Fract. Eng. Mater. Struct. 1992;15:855–870. doi: 10.1111/j.1460-2695.1992.tb00062.x. DOI
Dommarco R.C., Kozaczek K.J., Bastias P.C., Hahn G.T., Rubin C.A. Residual stresses and retained austenite evolution in SAE 52100 steel under non-ideal rolling contact loading. Wear. 2004;257:1081–1088. doi: 10.1016/j.wear.2004.01.020. DOI
Stickels C.A. Rolling contact fatigue tests of 52100 bearing steel using a modified NASA ball test rig. Wear. 1984;98:199–210. doi: 10.1016/0043-1648(84)90227-8. DOI
Zaccone M.A., Kelley J.B., Krauss G. Heat Treatment ’87. Institute of Metals; London, UK: 1988. Fatigue and strain-hardening of high carbon martensite–austenite composite microstructures; pp. 93–102.
Pineau A.G., Pelloux R.M. Influence of strain-induced martensitic transformation on fatigue crack growth rates in stainless steels. Metall. Trans. 1974;5:1103–1122. doi: 10.1007/BF02644322. DOI
Xiaotian J., Bingzhe L., Chenqing G., Fusan S. Transformation of retained austenite in carburised case during fatigue crack growth. Acta Metall. Sin. (Engl. Lett.) 1990;3:268–275.
Misra R.D.K. Understanding Strength-Toughness Combination in the Processing of Engineering Steels: A Perspective. Mater. Manuf. Process. 2010;25:60–71. doi: 10.1080/10426910903163223. DOI
Zaccone M.A., Krauss G. Elastic limit and microplastic response of hardened steels. Metall. Mater. Trans. A. 1993;24:2263–2277. doi: 10.1007/BF02648600. DOI
Neu R.W., Sehitoglu H. Transformation of retained austenite in carburized 4320 steel. Metall. Mater. Trans. A. 1991;22:1491–1500. doi: 10.1007/BF02667363. DOI
Borchers V.H., Doffin K. Kinetik der bildung des karbids Fe2C in stahl 100Cr6. Arch. Eisenhüttenwes. 1969;40:493–498. doi: 10.1002/srin.196904347. DOI
Mathews J.A. Retained austenite—A contribution to the metallurgy of magnetism. Trans. Am. Soc. Steel Treat. 1925;8:565–583.
[(accessed on 10 June 2021)]. Available online: https://authors.library.caltech.edu/5456/1/hrst.mit.edu/hrs/materials/public/ElectronMicroscope/EM_HistOverview.htm.
Reasbeck R.B. Improved Tool Life by the Cryotough Treatment. Metallurgia. 1989;4:178–179.
Çakir F.H., Çelik O.N. The effects of cryogenic treatment on the toughness and tribological behaviors of eutectoid steel. J. Mech. Sci. Technol. 2017;31:3233–3239. doi: 10.1007/s12206-017-0613-3. DOI
Villa M., Pantleon K., Somers M.A.J. Enhanced carbide precipitation during tempering of sub-zero Celsius treated AISI 52100 bearing steel; Proceedings of the Heat Treat & Surface Engineering Conference & Expo 2013; Chennai, India. 16–18 May 2013.
Soleimany J., Ghayour H., Amini K., Gharavi F. The Effect of Deep Cryogenic Treatment on Microstructure and Wear Behavior of H11 Tool Steel. Phys. Met. Metallogr. 2019;120:888–897. doi: 10.1134/S0031918X19090035. DOI
Šuchmann P., Nižňanska J. Effect of Deep Cryogenic Treatment on Carbides Precipitation Kinetics during Tempering of the X37CrMoV5-1 Hot Working Tool Steel; Proceedings of the European Conference on Heat Treatment 2015 and 22nd IFHTSE Congress 2015; Venice, Italy. 20–22 May 2015;
Koneshlou M., Asl K.M., Khomamizadeh F. Effect of cryogenic treatment on microstructure, mechanical and wear behaviors of AISI H13 hot work tool steel. Cryogenics. 2011;51:55–61. doi: 10.1016/j.cryogenics.2010.11.001. DOI
Collins D.N. Cryogenic treatment of tool steels. Adv. Mater. Proc. 1998;12:24–29.
Surberg C.H., Stratton P., Lingenhoele K. The effect of some heat treatment parameters on the dimensional stability of AISI D2. Cryogenics. 2008;48:42–47. doi: 10.1016/j.cryogenics.2007.10.002. DOI
Akhbarizadeh A., Golozar M.A., Shafeie A., Kholghy M. Effects of Austenitizing Time on Wear Behaviour of D6 Tool Steel After Deep Cryogenic Treatment. J. Iron Steel Res. Int. 2009;16:29–32. doi: 10.1016/S1006-706X(10)60023-4. DOI
Akhbarizadeh A., Amini K., Javadpour S. Effects of applying an external magnetic field during the deep cryogenic heat treatment on the corrosion resistance and wear behaviour of 1.2080 tool steel. Mater. Des. 2012;41:114–123. doi: 10.1016/j.matdes.2012.03.045. DOI
Amini K., Akhbarizadeh A., Javadpour S. Investigating the effect of holding duration on the microstructure of 1.2080 tool steel during the deep cryogenic treatment. Vacuum. 2012;86:1534–1540. doi: 10.1016/j.vacuum.2012.02.013. DOI
Akhbarizadeh A., Javadpour S., Amini K. Investigating the effect of electric current flow on the wear behaviour of 1.2080 tool steel during the deep cryogenic heat treatment. Mater. Des. 2013;45:103–109. doi: 10.1016/j.matdes.2012.08.012. DOI
Akhbarizadeh A., Javadpour S., Amini K., Yaghtin A.H. Investigating the effect of ball milling during the deep cryogenic heat treatment of the 1.2080 tool steel. Vacuum. 2013;90:70–74. doi: 10.1016/j.vacuum.2012.09.023. DOI
Jovičevič-Klug P., Jovičevič-Klug M., Sever T., Feizpour D., Podgornik B. Impact of steel type, composition and heat treatment parameters on effectiveness of deep cryogenic treatment. J. Mater. Res. Technol. 2021;14:1007–1020. doi: 10.1016/j.jmrt.2021.07.022. DOI
Podgornik B., Paulin I., Zajec B., Jacobson S., Leskovšek V. Deep cryogenic treatment of tool steels. J. Mater. Proc. Technol. 2016;229:398–406. doi: 10.1016/j.jmatprotec.2015.09.045. DOI
Voglar J., Novak Ž., Jovičevič-Klug P., Podgornik B., Kosec T. Effect of Deep Cryogenic Treatment on Corrosion Properties of Various High-Speed Steels. Metals. 2021;11:14. doi: 10.3390/met11010014. DOI
Leskovšek V., Podgornik B. Vacuum heat treatment, deep cryogenic treatment and simultaneous pulse plasma nitriding and tempering of P/M S390MC steel. Mater. Sci. Eng. A. 2012;531:119–129. doi: 10.1016/j.msea.2011.10.044. DOI
Podgornik B., Majdic F., Leskovšek V., Vizintin J. Improving tribological properties of tool steels through combination of deep-cryogenic treatment and plasma nitriding. Wear. 2012;288:88–93. doi: 10.1016/j.wear.2011.04.001. DOI
Jovičevič-Klug P., Podgornik B. Comparative study of conventional and deep cryogenic treatment of AISI M3:2 (EN 1.3395) high-speed steel. J. Mater. Res. Technol. 2020;9:13118–13127. doi: 10.1016/j.jmrt.2020.09.071. DOI
Huang J.Y., Zhu Y.T., Liao X.Z., Beyerlein I.J., Bourke M.A., Mitchell T.E. Microstructure of cryogenic treated M2 tool steel. Mater. Sci. Eng. A. 2003;339:241–244. doi: 10.1016/S0921-5093(02)00165-X. DOI
Candane D., Alagumurthi N., Palaniradja K. Effect of cryogenic treatment on microstructure and wear characteristics of AISI M35 HSS. Int. J. Mater. Sci. Appl. 2013;2:56–65. doi: 10.11648/j.ijmsa.20130202.14. DOI
Nasery Isfahanya A., Saghafiana H., Borhani G. The effect of heat treatment on mechanical properties and corrosion behavior of AISI 420 martensitic stainless steel. J. Alloys Compd. 2011;509:3931–3936. doi: 10.1016/j.jallcom.2010.12.174. DOI
Shahriari A., Ghaffari M., Khaksar L., Nasiri A., Hadadzadeh A., Amirkhiz B.S., Mohammadi M. Corrosion resistance of 13wt.% Cr martensitic stainless steels: Additively manufactured CX versus wrought Ni-containing AISI 420. Corr. Sci. 2021;184:109362. doi: 10.1016/j.corsci.2021.109362. DOI
Paydar H., Amini K., Akhbarizadeh A. Investigating the effect of deep cryogenic heat treatment on the wear behavior of 100Cr6 alloy steel. Kovove Mater. 2014;52:163–169. doi: 10.4149/km_2014_3_163. DOI
Stojko A., Hansen M.F., Slycke J., Somers M.A.J. Isothermal Martensite Formation at Sub-Zero Temperatures. J. ASTM Int. 2011;8:JAI103459. doi: 10.1520/JAI103459. DOI
Pietikainen J. Effects of the aging of martensite on its deformation characteristics and on fracture in Fe–Ni–Si–C steel. J. Iron Steel Inst. 1968;1:74–78.
Villa M., Grumsen F.B., Pantleon K., Somers M.A.J. Martensitic transformation and stress partitioning in a high-carbon steel. Scr. Mater. 2012;67:621–624. doi: 10.1016/j.scriptamat.2012.06.027. DOI
Villa M., Pantleon K., Somers M.A.J. Evolution of compressive strains in retained austenite during sub-zero Celsius martensite formation and tempering. Acta Mater. 2014;65:383–392. doi: 10.1016/j.actamat.2013.11.007. DOI
Preciado M., Pellizzari M. Influence of deep cryogenic treatment on the thermal decomposition of Fe-C martensite. J. Mater. Sci. 2014;49:8183–8191. doi: 10.1007/s10853-014-8527-2. DOI
Jurči P., Dománková M., Ptačinová J., Pašák M., Kusý M., Priknerová P. Investigation of the Microstructural Changes and Hardness Variations of Sub-Zero Treated Cr-V Ledeburitic Tool Steel Due to the Tempering Treatment. J. Mater. Eng. Perform. 2018;27:1514–1529. doi: 10.1007/s11665-018-3261-6. DOI
Li B., Li C., Wang Y., Jin X. Effect of Cryogenic Treatment on Microstructure and Wear Resistance of Carburized 20CrNi2MoV Steel. Metals. 2018;8:808. doi: 10.3390/met8100808. DOI
Ghosh P., Dhokey N.B. Refinement of tempered martensite structure and its effect on wear mechanism in SAE 8620. Tribol.–Mater. Surf. Interfaces. 2016;10:1262586. doi: 10.1080/17515831.2016.1262586. DOI
Putu Widiantara I., Mahendradhany A.P., Putra D.P., Yang H.W., Park K.S., Ko G. Achieving high fracture toughness and tribological properties in high carbon steels via sub-zero treatment and low-temperature tempering. J. Alloys Compd. 2020;821:153195. doi: 10.1016/j.jallcom.2019.153195. DOI
Moreira J.C., Ávila R.F., Godoy G.C.D., Abrao A.M. The effect of the cryogenic treatment on the machinability of hardened AISI 52100 bearing steel. Rev. Mater. 2009;14:932–946. doi: 10.1590/S1517-70762009000300005. DOI
Tyshchenko A.I., Theisen W., Oppenkowski A., Siebert S., Razumov O.N., Skoblik A.P., Sirosh V.A., Petrov J.N., Gavriljuk V.G. Low-temperature martensitic transformation and deep cryogenic treatment of a tool steel. Mater. Sci. Eng. A. 2010;527:7027–7039. doi: 10.1016/j.msea.2010.07.056. DOI
Jeleńkowski J., Ciski A., Babul T. Effect of deep cryogenic treatment on substructure of HS6-5-2 high speed steel. J. Achiev. Mater. Manuf. Eng. 2010;43:80–87.
Xu G., Huang P., Feng Z., Wei Z., Zu G. Effect of Deep Cryogenic Time on Martensite Multi-Level Microstructures and Mechanical Properties in AISI M35 High-Speed Steel. Materials. 2022;15:6618. doi: 10.3390/ma15196618. PubMed DOI PMC
Villa M., Somers M.A.J. On the Role of Isothermal Martensite Formation during Cryogenic Treatment of Steels. HTM J. Heat Treat. Mater. 2020;75:263–286. doi: 10.3139/105.110420. DOI
Cahn R.W., Hassen P. Physical Metallurgy. 4th ed. Elsevier Science, B.V.; Amsterdam, The Netherlands: 1996.
Villa M., Hansen M.F., Somers M.A.J. Martensite formation in Fe-C alloys at cryogenic temperatures. Scr. Mater. 2017;141:129–132. doi: 10.1016/j.scriptamat.2017.08.005. DOI
Villa M., Hansen M.F., Pantleon K., Somers M.A.J. Thermally activated growth of lath martensite in Fe–Cr–Ni–Al stainless steel. Mater. Sci. Technol. 2015;31:115–122. doi: 10.1179/1743284714Y.0000000583. DOI
Eldis G.T., Cohen M. Strength of initially virgin martensite at −196 °C after aging and tempering. Metall. Trans. A. 1983;14:1007–1012. doi: 10.1007/BF02659848. DOI
van Genderen M.J., Boettger A., Cernik R.J., Mittemeijer E.J. Early Stages of Decomposition in Iron-Carbon and Iron-Nitrogen Martensites: Diffraction Analysis Using Synchrotron Radiation. Metall. Trans. A. 1993;24:1965–1973. doi: 10.1007/BF02666331. DOI
McEvily A.J., Ku R.C., Johnston T.L. The source of martensite strength. Trans. Metall. Soc. AIME. 1966;236:108–114.
Li S., Deng L., Wu X., Min Y., Wang H. Influence of deep cryogenic treatment on microstructure and evaluation by internal friction of a tool steel. Cryogenics. 2010;50:754–758. doi: 10.1016/j.cryogenics.2010.09.002. DOI
Pellizzari M., Menegante V., Villa M., Somers M.A.J. On the Influence of Deep Cryogenic Treatment on Tempering Transformations in AISI D2 Steels; Proceedings of the 26th IFHTSE Congress of Heat Treatment and Surface Engineering; Moscow, Russia. 17–19 September 2019.
Koval J.N., Kokorin V.V. Tetragonality of Carbonless Martensite. Fiz. Met. Metalloved. 1975;39:1044–1048. (In Russian)
Ulakko K., Gavriljuk V.G., Nadutov V.M. Aging of Freshly Formed Fe-Based Martensites at Low Temperatures. Metall. Mater. Trans. A. 1994;25:889–909. doi: 10.1007/BF02652265. DOI
Uwakweh O.N.C., Génin J.M.R., Silvain J.F. Electron Microscopy Study of the Aging and First Stage of Tempering of High-Carbon Fe-C Martensite. Metall. Trans. A. 1991;22:797–806. doi: 10.1007/BF02658989. DOI
Katoch S., Sehgal R., Singh V. Effect of Cryogenic Treatment on Hardness, Microstructure and Wear Behavior of Hot Die Steel Grade AISI-H13; Proceedings of the International Conference on Advances in Tribology and Engineering Systems; Gujarat, India. 15–18 October 2013; pp. 159–166.
Korade D., Ramana K.V., Jagtap K. Study of effect of population density of carbides on surface roughness and wear rate of H21 tool steel. Mater. Today Proc. 2019;19:228–232. doi: 10.1016/j.matpr.2019.06.709. DOI
Li S., Min N., Deng L., Wu X., Min Y., Wang H. Influence of deep cryogenic treatment on internal friction behaviour in the process of tempering. Mater. Sci. Eng. A. 2011;528:1247–1250. doi: 10.1016/j.msea.2010.10.012. DOI
Li S., Min N., Li J., Wu X. Internal friction measurements of phase transformations during the process of deep cryogenic treatment of a tool steel. Cryogenics. 2013;57:1–5. doi: 10.1016/j.cryogenics.2013.03.003. DOI
Li S., Wu X. Microstructural evolution and corresponding property changes after deep cryo-treatment of tool steel. Mater. Sci. Technol. 2016;31:1867–1878. doi: 10.1179/1743284715Y.0000000038. DOI
Cheng L., van der Pers N.M., Boettger A., de Keijser T.H., Mittemeijer E.J. Lattice Changes of Iron-Carbon Martensite on Aging at Room Temperature. Metall. Trans. A. 1991;22:1957–1967. doi: 10.1007/BF02669863. DOI
Gavriljuk V.G., Firstov S.A., Sirosh V.A., Tyshchenko A.I., Mogilny G.S. Carbon Distribution in Low-Temperature Isothermal Iron-Based Martensite and Its Tetragonality. Metallofiz. Noveishie Tekhnol. 2016;38:455–475. doi: 10.15407/mfint.38.04.0455. DOI
Gavriljuk V.G., Sirosh V.V., Petrov Y.N., Tyshchenko A.I., Theisen W., Kortmann A. Carbide Precipitation During Tempering of a Tool Steel Subjected to Deep Cryogenic Treatment. Metall. Mater. Trans. A. 2014;45:2453–2465. doi: 10.1007/s11661-014-2202-8. DOI
Zhou G., Deng S., Wei W., Liu Q. Effect of multiple deep cryo-treating and tempering on microstructure and property evolution of high carbon bearing steel. Mater. Res. Express. 2020;7:066529. doi: 10.1088/2053-1591/ab9c63. DOI
Jovičevič-Klug P., Jenko M., Jovičevič-Klug M., Šetina Batič B., Kovač J., Podgornik B. Effect of deep cryogenic treatment on surface chemistry and microstructure of selected high-speed steels. Appl. Surf. Sci. 2021;548:149257. doi: 10.1016/j.apsusc.2021.149257. DOI
Alexandru G., Ailincai C., Baciu C. Influence de traitements thermiques à basse temperature sur la duree de vie des aciers à outils. Rev. Metall./Mém. Etud. Sci. 1990;87:383–388.
Wang W., Srinivasan V., Siva S., Bensely A., Lal M., Alfantazi A. Corrosion Behavior of Deep Cryogenically Treated AISI 420 and AISI 52100 Steel. Corrosion. 2014;70:708–720. doi: 10.5006/1150. DOI
Pellizzari M., Molinari A. Deep Cryogenic Treatment of Cold Work Tool Steel; Proceedings of the 6th International Tooling Conference; Karlstad, Sweden. 10–13 September 2002; pp. 657–669.
Amini K., Akhbarizadeh A., Javadpour S. Effect of deep cryogenic treatment on the formation of nano-sized carbides and the wear behavior of D2 tool steel. Int. J. Miner. Metall. Mater. 2012;19:795–799. doi: 10.1007/s12613-012-0630-2. DOI
Tisza M. Physical Metallurgy for Engineers. 2nd ed. ASM International; Materials Park, OH, USA: Freund Publishing House Ltd.; London, UK: Tel Aviv, Israel: 2002.
Callister W.D., Rethwisch D.G. Materials Science and Engineering—An Introduction. 8th ed. Wiley Publishing; Hoboken, NJ, USA: 2009.
Shtansky D.V., Nakai K., Ohmori Y. Decomposition of Martensite by Discontinuous-like Precipitation Reaction in an Fe-17Cr-0.5C Alloy. Acta Mater. 2000;48:969–983. doi: 10.1016/S1359-6454(99)00364-X. DOI
Jurči P., Ptačinová J., Sahul M., Dománková M., Dlouhý I. Metallurgical principles of microstructure formation in sub-zero treated cold-work tool steels—A review. Matér. Tech. 2018;106:104. doi: 10.1051/mattech/2018022. DOI
Medvedeva N.I., Kar’kina L.E., Ivanovski A.L. Effect of Chromium on the Electronic Structure of the Cementite Fe3C. Phys. Solid State. 2006;48:15–19. doi: 10.1134/S1063783406010045. DOI
Inoue A., Ogura T., Masumoto T. Microstructures of deformation and fracture of cementite in pearlitic carbon steels strained at various temperatures. Metall. Mater. Trans. A. 1977;8:1689–1695. doi: 10.1007/BF02646871. DOI
Umemoto M., Todaka Y., Tsuchiya K. Mechanical Properties of Cementite and Fabrication of Artificial Pearlite. Mater. Sci. Forum. 2003;426–432:859–864. doi: 10.4028/www.scientific.net/MSF.426-432.859. DOI
Kim W.J., Wolfenstine J., Ruano O.A., Frommeyer G., Sherby O.D. Processing and superplastic properties of fine-grained iron carbide. Metall. Mater. Trans. A. 1992;23:527–535. doi: 10.1007/BF02801170. DOI
Porter D.A., Easterling K.E., Smith G.D.W. Dynamic studies of the tensile deformation and fracture of pearlite. Acta Metall. 1978;26:1405–1422. doi: 10.1016/0001-6160(78)90156-6. DOI
Krauss G. Microstructure and Properties of Carburized Steels. In: Dossett J.L., Totten G.E., editors. Heat Treating of Irons and Steels. Volume 4. ASM International; Materials Park, OH, USA: 1991. pp. 363–375.
Mohrbacher H. Metallurgical concepts for optimized processing and properties of carburizing steel. Adv. Manuf. 2016;4:105–114. doi: 10.1007/s40436-016-0142-9. DOI
Neuhauser H.J., Pitsch W. Zur Erniedrigung der Martensittemperatur durch inkohärente Teilchen im Austenit. Arch. Eisenhüttenwesen. 1973;44:235–240. doi: 10.1002/srin.197304523. DOI
Chiu L.H., Lin Y.M., Yeh S.H., Chang H. Effect of Cryogenic Treatment and Carbide Spray Coating on the Wear Behavior of Carburized steel. Adv. Mat. Res. 2011;154–155:1143–1151. doi: 10.4028/www.scientific.net/AMR.154-155.1143. DOI
Kratzer D., Dobler F., Tobie T., Hoja T., Steinbacher M., Stahl K. Effect of low-temperature treatments on surface hardness, retained austenite content, residual stress condition and the resulting tooth root bending strength of case hardened 18CrNiMo7-6 gears. J. Mech. Eng. Sci. 2019;233:7350–7357. doi: 10.1177/0954406219846160. DOI
Bensely A., Venkatesh S., Mohan Lal D., Nagarajan G., Rajadurai A., Junik K. Effect of cryogenic treatment on distribution of residual stress in case carburized En 353 steel. Mater. Sci. Eng. A. 2008;479:229–235. doi: 10.1016/j.msea.2007.07.035. DOI
Karaca B., Gün T., Dayanç A., Kumruoglu L.C. Property Improvement of Subzero/Cryogenic Heat Treated Camshafts made of 8620H, 16MnCr5 and 100Cr6 Steels. Acta Phys. Pol. A. 2019;135:800–803. doi: 10.12693/APhysPolA.135.800. DOI
Yan Y., Luo Z., Liu K., Zhang C., Wang M., Wang X. Effect of Cryogenic Treatment on the Microstructure and Wear Resistance of 17Cr2Ni2MoVNb Carburizing Gear Steel. Coatings. 2022;12:281. doi: 10.3390/coatings12020281. DOI
Yan X., Liu K., Luo Z., Wang M., Wang X. Effect of Cryogenic Treatment on Microstructure, Mechanical Properties and Distortion of Carburized Gear Steels. Metals. 2021;11:1940. doi: 10.3390/met11121940. DOI
Roy S., Sundararajan S. The effect of heat treatment routes on the retained austenite and Tribomechanical properties of carburized AISI 8620 steel. Surf. Coat. Technol. 2016;308:236–243. doi: 10.1016/j.surfcoat.2016.06.095. DOI
Li C., Li B.Z., Jin X., Wang Y. Microstructure and mechanical properties in core of a carburizing 20CrNi2MoV bearing steel subjected to cryogenic treatment. J. Iron Steel Res. Int. 2021;28:360–369. doi: 10.1007/s42243-020-00516-8. DOI
Samuel P., Arul S. Effect of Cryogenic Treatment on the Mechanical Properties of Low Carbon Steel IS 2062. Mater. Today Proc. 2018;5:25065–25074. doi: 10.1016/j.matpr.2018.10.307. DOI
Karaca B., Kumruoğlu L.C. Industrial scale extrusion performance of cryogenically processed DIN 100 Cr6 and DIN 21NiCrMo2 steels. Rev. Metal. 2022;58:e212. doi: 10.3989/revmetalm.212. DOI
Baldissera P., Delprete C. Effects of deep cryogenic treatment on static mechanical properties of 18NiCrMo5 carburized steel. Mater. Des. 2009;30:1435–1440. doi: 10.1016/j.matdes.2008.08.015. DOI
Baldissera P. Fatigue scatter reduction through deep cryogenic treatment on the 18NiCrMo5 carburized steel. Mater. Des. 2009;30:3636–3642. doi: 10.1016/j.matdes.2009.02.019. DOI
Jung S., Medlin D., Krauss G. Effects of Subzero Treatments on the Bending Fatigue Performance of Carburized SAE-4320 and SAE-9310 Steels. SAE; Warrendale, PA, USA: 1996. SAE Technical Paper 960313. DOI
Preciado M., Bravo P., Alegre J. Effect of low temperature tempering prior cryogenic treatment on carburized steels. J. Mater. Proc. Technol. 2006;176:41–44. doi: 10.1016/j.jmatprotec.2006.01.011. DOI
Mohan N., Arul S. Effect of Cryogenic Treatment on the Mechanical Properties of Alloy Steel 16MnCr5. Mater. Today Proc. 2018;5:25265–25275. doi: 10.1016/j.matpr.2018.10.329. DOI
Cappel J., Weinberg M., Flender R. The metallurgy of roller-bearing steels. Steel Grips. 2004;2:261–268.
Beswick J.M. Fracture and fatigue crack propagation properties of hardened 52100 steel. Metall. Mater. Trans. A. 1989;20:1961–1973. doi: 10.1007/BF02650283. DOI
Cui W., San-Martín D., Rivera-Díaz-del-Castillo P.E.J. Stability of retained austenite in martensitic high carbon steels. Part I: Thermal stability. Mater. Sci. Eng. A. 2018;711:683–695. doi: 10.1016/j.msea.2017.10.102. DOI
Barrow A.T.W., Kang J.H., Rivera-Díaz-del-Castillo P.E.J. The ε→η→Θ transition in 100Cr6 and its effect on mechanical properties. Acta Mater. 2012;60:2805–2815. doi: 10.1016/j.actamat.2012.01.046. DOI
Sri Siva R., Mohan Lal D., Kesavan Nair P., Arockia Jaswin M. Influence of cryogenic treatment on the wear characteristics of 100Cr6 bearing steel. Int. J. Miner. Metall. Mater. 2014;21:46–51. doi: 10.1007/s12613-014-0863-3. DOI
Sri Siva R., Arockia Jaswin M., Mohan Lal D. Enhancing the Wear Resistance of 100Cr6 Bearing Steel Using Cryogenic Treatment. Tribol. Trans. 2012;55:387–393. doi: 10.1080/10402004.2012.664837. DOI
Joseph Vimal A., Bensely A., Mohan Lal D., Srinivasan K. Deep Cryogenic Treatment Improves Wear Resistance of En 31 Steel. Mater. Manuf. Process. 2008;23:369–376. doi: 10.1080/10426910801938098. DOI
Jovičevič-Klug P., Kranjec T., Jovičevič-Klug M., Kosec T., Podgornik B. Influence of the Deep Cryogenic Treatment on AISI 52100 and AISI D3 Steel’s Corrosion Resistance. Materials. 2021;14:6357. doi: 10.3390/ma14216357. PubMed DOI PMC
Kara F., Özbek O., Özbek N.A., Uygur I. Investigation of the Effect of Deep Cryogenic Process on Residual Stress and Residual Austenite. Gazi J. Eng. Sci. 2021;7:143–151. doi: 10.30855/gmbd.2021.02.07. DOI
Harish S., Bensely A., Mohan Lal D., Rajadurai A., Lenkey G.B. Microstructural study of cryogenically treated En 31 bearing steel. J. Mater. Process. Technol. 2009;209:3351–3357. doi: 10.1016/j.jmatprotec.2008.07.046. DOI
Hansen N. Hall-Petch relation and boundary strengthening. Scr. Mater. 2004;51:801–806. doi: 10.1016/j.scriptamat.2004.06.002. DOI
Zhang Z., Delagnes D., Bernhart G. Microstructure evolution of hot-work tool steels during tempering and definition of a kinetic law based on hardness measurements. Mater. Sci. Eng. A. 2004;380:222–230. doi: 10.1016/j.msea.2004.03.067. DOI
Okuno T. Effect of Microstructure on the Toughness of Hot Work Tool Steels. AISI H13, H10, and H19. Trans. ISIJ. 1987;27:51–59. doi: 10.2355/isijinternational1966.27.51. DOI
Deirmina F., Peghini N., Al Mangour B., Grzesiak D., Pellizzari M. Heat treatment and properties of a hot work tool steel fabricated by additive manufacturing. Mater. Sci. Eng. A. 2019;753:109–121. doi: 10.1016/j.msea.2019.03.027. DOI
Chou C.Y., Pettersson N.H., Durga A., Zhang F., Oikonomou C., Borgenstam A., Odqvist J., Lindwall G. Influence of solidification structure on austenite to martensite transformation in additively manufactured hot-work tool steels. Acta Mater. 2021;215:117044. doi: 10.1016/j.actamat.2021.117044. PubMed DOI PMC
Xu N., Cavallaro G.P., Gerson A.R. Synchrotron micro-diffraction analysis of the microstructure of cryogenically treated high performance tool steels prior to and after tempering. Mater. Sci. Eng. A. 2010;527:6822–6830. doi: 10.1016/j.msea.2010.06.072. DOI
Pérez M., Belzunce F.J. The effect of deep cryogenic treatments on the mechanical properties of an AISI H13 steel. Mater. Sci. Eng. A. 2015;624:32–40. doi: 10.1016/j.msea.2014.11.051. DOI
López-Leyva A., Luis-Pantoja G., Juárez-Islas J.A., Mejía-Caballero I., Campos-Silva I. Influence of Heat and Cryogenic Treatments on the Abrasive Wear Behavior of H13 Tool Steel. J. Mater. Eng. Perform. 2023;32:10254–10264. doi: 10.1007/s11665-023-07865-x. DOI
Amini K., Negahbani M., Ghayour H. The effect of deep cryogenic treatment on hardness and wear behavior of the H13 tool steel. Metall. Ital. 2015;3:53–58.
Katoch S., Sehgal R., Singh V., Guptad M.K., Miae M., Pruncuf C.I. Improvement of tribological behavior of H-13 steel by optimizing the cryogenic-treatment process using evolutionary algorithms. Tribol. Int. 2019;140:105895. doi: 10.1016/j.triboint.2019.105895. DOI
Katoch S., Sehgal R., Singh V. Wear resistance evaluation of cryogenically treated AISI–H11 steel: An optimization approach. Indian J. Eng. Mater. Sci. 2019;26:112–125.
Dhokey N.B., Lalge P., Rajankar A., Bawane K., Mahajan R. Effect of Cryosoaking Period on Soft Tempering Temperature and Wear Mechanism in AISI H11 Tool Steel; Proceedings of the 7th International Conference on Fracture Fatigue and Wear; Ghent, Belgium. 9–10 July 2019; pp. 569–580.
Katoch S., Sehgal R., Singh V. Optimization of friction and wear characteristics of varied cryogenically treated hot die steel grade AISI-H13 under dry condition. Friction. 2017;5:66–86. doi: 10.1007/s40544-017-0139-9. DOI
Bhawar V., Khot S., Kattire P., Mehta M., Rajkumar Singh R. Influence of Deep Cryogenic Treatment (DCT) on Thermo Mechanical Performance of AISI H13 Tool Steel. J. Mater. Sci. Chem. Eng. 2017;5:91–101. doi: 10.4236/msce.2017.51013. DOI
Gecu R. Combined effects of cryogenic treatment and tempering on microstructural and tribological features of AISI H13 steel. Mater. Chem. Phys. 2022;292:126802. doi: 10.1016/j.matchemphys.2022.126802. DOI
Katoch S., Sehgal R., Singh V. Evolution of mechanical properties and microstructure of differently cryogenically treated hot die steel AISI–H13. Int. J. Mater. Res. 2017;108:173–184. doi: 10.3139/146.111467. DOI
Han L., Wang Y., Liu S., Zhang Z.H., Song X., Li Y., Liu W., Yang Z., Mu M. Effect of cryogenic treatment on the microstructure and mechanical properties of selected laser melted H13 steel. J. Mater. Res. Technol. 2022;21:5056–5065. doi: 10.1016/j.jmrt.2022.11.068. DOI
Nakonieczny A., Ciski A., Babul T. Cryogenic Treatment and Peening of Hot-work Tool Steel. BHM-Berg-Hüttenmännische Monatshefte. 2010;155:105–109. doi: 10.1007/s00501-010-0544-0. DOI
Shinde T., Pruncu C., Dhokey N.B., Parau A.C., Vladescu A. Effect of Deep Cryogenic Treatment on Corrosion Behavior of AISI H13 Die Steel. Materials. 2021;14:7863. doi: 10.3390/ma14247863. PubMed DOI PMC
Korade D., Ramana K.V., Jagtap K. Influence of Cryogenic Treatment on the Tribological Behaviour of AISI H21 Tool Steel. Mater. Res. 2019;22:e20170745. doi: 10.1590/1980-5373-mr-2017-0745. DOI
Korade D., Ramana K.V., Jagtap K. Effect of Carbide Density on Fatigue Limit of H21 Die Steel. J. Mater. Eng. Perform. 2020;29:230–241. doi: 10.1007/s11665-020-04556-9. DOI
Liu Y., Lin J., Min J., Ma Z., Wu B. Effect of Deep Cryogenic Treatment on Mechanical Properties and Microstructure of the Tool Steel CR7V for Hot Stamping. J. Mater. Eng. Perform. 2018;27:4382–4391. doi: 10.1007/s11665-018-3552-y. DOI
Jimbert P., Iturrondobeitia M., Julen Ibarretxe J., Fernandez-Martinez R. Influence of Cryogenic Treatment on Wear Resistance and Microstructure of AISI A8 Tool Steel. Metals. 2018;8:1038. doi: 10.3390/met8121038. DOI
Wills W.H. Practical observations on high-carbon high chromium tool steels. Trans. ASM. 1935;23:469–475.
Robertson J. Diamond-like amorphous carbon. Mater. Sci. Eng. R. 2002;37:129–281. doi: 10.1016/S0927-796X(02)00005-0. DOI
Liljengren M., Kjellsson K., Johansson T., Asnafi N. Die Materials, Hardening Methods and Surface Coatings for Forming of High, Extra High & Ultra High Strength Steel Sheets (HSS/EHSS/UHSS); Proceedings of the Annual Conference of the International Deep Drawing Research Group (IDDRG); Porto, Portugal. 19–21 June 2006; pp. 597–603.
Cheng L.C., Wu T.B., Hu C.T. The role of microstructural features in abrasive wear of a D-2 tool steel. J. Mater. Sci. 1988;23:1610–1614. doi: 10.1007/BF01115699. DOI
Nykiel T., Hryniewicz T. Quantitative Approach to Coagulation, Coalescence, and Polygonization of Carbides in the NCWV/D3 Tool Steel. Metall. Mater. Trans. A. 2000;31:2661–2665. doi: 10.1007/s11661-000-0211-2. DOI
Das D., Sarkar R., Dutta A.K., Ray K.K. Influence of sub-zero treatments on fracture toughness of AISI D2 steel. Mater. Sci. Eng. A. 2010;528:589–603. doi: 10.1016/j.msea.2010.09.057. DOI
Rhyim Y.M., Han S.H., Na Y.S., Lee J.H. Effect of Deep Cryogenic Treatment on Carbide Precipitation and Mechanical Properties of Tool Steel. Solid State Phenom. 2006;118:9–14. doi: 10.4028/www.scientific.net/SSP.118.9. DOI
Moscoso M.F.C., Ramos F.D., de Lima Lessa C.R., Cunha P.H.C., Toniolo J.C., Braga Lemos G.V. Effects of Cooling Parameter and Cryogenic Treatment on Microstructure and Fracture Toughness of AISI D2 Tool Steel. J. Mater. Eng. Perform. 2020;29:7929–7939. doi: 10.1007/s11665-020-05285-9. DOI
Ghasemi-Nanesa H., Jahazi M. Simultaneous enhancement of strength and ductility in cryogenically treated AISI D2 steel. Mater. Sci. Eng. A. 2014;598:413–419. doi: 10.1016/j.msea.2014.01.065. DOI
Korade D.N., Ramana K.V., Jagtap K.R., Dhokey N.B. Effect of Deep Cryogenic Treatment on Tribological Behaviour of D2 Tool Steel—An Experimental Investigation. Mater. Today Proc. 2017;4:7665–7673. doi: 10.1016/j.matpr.2017.07.100. DOI
Kara F., Karabatak M., Ayyıldız M., Nas E. Effect of machinability, microstructure and hardness of deep cryogenic treatment in hard turning of AISI D2 steel with ceramic cutting. J. Mater. Res. Technol. 2020;9:969–983. doi: 10.1016/j.jmrt.2019.11.037. DOI
Hradil D., Suchmann P., Dlouhy J. Deep Cryogenic Treatment of the D2 Tool Steel; Proceedings of the 24th IFHTSE CONGRESS 2017—European Conference on Heat Treatment and Surface Engineering—A3TS CONGRESS; Nice, France. 26–29 June 2017.
Mochtar M.A., Putra W.N., Abram M. Effect of tempering temperature and subzero treatment on microstructures, retained austenite, and hardness of AISI D2 tool steel. Mater. Res. Express. 2023;10:056511. doi: 10.1088/2053-1591/acd61b. DOI
Wierszyllowski I. The Influence of Post-quenching Deep Cryogenic Treatment on Tempering Processes and Properties of D2 Tool Steel. Studies of Structure, XRD, Dilatometry, Hardness and Fracture Toughness. Defect Diffus. Forum. 2006;258–260:415–420. doi: 10.4028/www.scientific.net/DDF.258-260.415. DOI
Akıncıoglu S. Investigation of the Effect of Deep Cryogenic Process on the Tribological Properties of X153CrMoV12 Mold Steel. J. Mater. Eng. Perform. 2021;30:2843–2852. doi: 10.1007/s11665-021-05599-2. DOI
Schulz A., Cui C., Steinbacher M., Ümit T., Wunde M., Jung I., Acar S., Nürnberger F., Gerstein G., Herbst S., et al. Effects of Cryogenic Treatment on the Microstructure and Mechanical Properties of High-alloyed Tool Steels. HTM J. Heat Treat. Mater. 2020;75:287–307. doi: 10.3139/105.110422. DOI
Demir E., Tokta I. Effects of cryogenic treatment on residual stresses of AISI D2 tool steel. Kovove Mater. 2018;56:153–161. doi: 10.4149/km_2018_3_153. DOI
Akhbarizadeh A., Javadpour S. Investigating the effect of as-quenched vacancies in the final microstructure of 1.2080 tool steel during the deep cryogenic heat treatment. Mater. Lett. 2013;93:247–250. doi: 10.1016/j.matlet.2012.11.081. DOI
Amini K., Akhbarizadeh A., Javadpour S. Effect of Carbide Distribution on Corrosion Behavior of the Deep Cryogenically Treated 1.2080 Steel. J. Mater. Eng. Perform. 2016;25:365–373. doi: 10.1007/s11665-015-1858-6. DOI
Dhokey N.B., Nirbhavne S. Dry sliding wear of cryotreated multiple tempered D-3 tool steel. J. Mater. Process. Technol. 2009;209:1484–1490. doi: 10.1016/j.jmatprotec.2008.03.069. DOI
Mohan Lal D., Renganarayanan S., Kalanihidi A. Cryogenic treatment to augment wear resistance of tool and die steels. Cryogenics. 2001;14:149–155. doi: 10.1016/S0011-2275(01)00065-0. DOI
Kumar S., Nahraj M., Bongale A., Khedkar N.K. Effect of deep cryogenic treatment on the mechanical properties of AISI D3 tool steel. Int. J. Mat. Eng. Innov. 2019;10:98–113. doi: 10.1504/IJMATEI.2019.099789. DOI
Uygur I., Gerengi H., Arslan Y., Kurtay M. The Effects of Cryogenic Treatment on the Corrosion of AISI D3 Steel. Mater. Res. 2015;18:569–574. doi: 10.1590/1516-1439.349914. DOI
Dixit S.S., Nimbalkar S.R., Kharde R.R. Dry Sliding Wear Analysis of D5 Tool Steel at Different Heat Treatments. Int. J. Eng. Sci. 2013;2:16–26.
Hill H., Huth S., Weber S., Theisen W. Corrosion properties of a plastic mould steel with special focus on the processing route. Mater. Corros. 2011;62:436–443. doi: 10.1002/maco.200905570. DOI
Jurči P., Ptačinová J., Dlouhý I. Cryogenic treatment of Cr-V die steel in liquid helium—Effect on mechanical properties; Proceedings of the 28th International Conference on Metallurgy and Materials METAL 2019; Brno, Czech Republic. 22–24 May 2019; Greensboro, NC, USA: Tanger Ltd.; 2019. pp. 562–568.
Jurči P., Šuštaršič B., Leskovšek V. Fracture Characteristics of the Cr-V Ledeburitic Steel Vanadis 6. Mater. Tehnol. 2010;44:79–86.
Yarasu V., Janka L., Jurči P. Dry sliding wear behaviour of sub-zero processed Cr-V ledeburitic steel Vanadis 6 against three counterparts types. Int. J. Mater. Res. 2020;111:894–907. doi: 10.3139/146.111962. DOI
Yarasu V., Jurci P., Hornik J., Krum S. Optimization of cryogenic treatment to improve the tribological behavior of Vanadis 6 steel using the Taguchi and Grey relation approach. J. Mater. Res. Technol. 2022;18:2945–2962. doi: 10.1016/j.jmrt.2022.03.145. DOI
Yarasu V., Hornik J., Jurci P. Dry Sliding Tribological Behavior of Cryotreated Cr–V Ledeburitic Tool Steel against CuSn6 Counterpart. Steel Res. Int. 2022;93:2200453. doi: 10.1002/srin.202200453. DOI
Gök D.A., Öztürk V. The Influence of Cryogenic Treatment on Mechanical Properties and Microstructures of Vanadis 8 Steel. J. East. Anatol. Sci. Eng. Des. 2020;2:22–32.
Li H., Tong W., Cui J., Zhang H., Chen L., Zuo L. The influence of deep cryogenic treatment on the properties of high-vanadium alloy steel. Mater. Sci. Eng. A. 2016;662:356–362. doi: 10.1016/j.msea.2016.03.039. DOI
Li S., Xie Y., Wu X. Hardness and toughness investigations of deep cryogenic treated cold work die steel. Cryogenics. 2010;50:89–92. doi: 10.1016/j.cryogenics.2009.12.005. DOI
Kara F., Küçük Y., Özbek O., Özbek N.A., Gok M.S., Altas E., Uygur I. Effect of cryogenic treatment on wear behavior of Sleipner cold work tool steel. Tribol. Int. 2023;180:108301. doi: 10.1016/j.triboint.2023.108301. DOI
Wang J., Xiong J., Fan H., Yang H.S., Liu H.H., Shen B.L. Effects of high temperature and cryogenic treatment on the microstructure and abrasion resistance of a high chromium cast iron. J. Mater. Proc. Technol. 2009;209:3236–3240. doi: 10.1016/j.jmatprotec.2008.07.035. DOI
Scandian C., Luz T.S., Pardal J.M., Tavares S.S.M. Failure Analysis of Guides Made of High-Strength AISI D2 Tool Steel. J. Fail. Anal. Preven. 2015;15:789–793. doi: 10.1007/s11668-015-0038-1. DOI
Collins D.N. Deep cryogenic treatment of tool steels—A review. Heat Treat. Met. 1996;23:40–42.
Chen Z., Zhang Y., Yan X., Li J., Li F. Effect of cryogenic and electrolytic passivation treatment on wear resistance of M2 high-speed steel. Int. J. Adv. Manuf. Technol. 2023;127:3049–3060. doi: 10.1007/s00170-023-11639-z. DOI
Dhokey N.B., Hake A., Kadu S., Bhoskar I., Dey G.K. Influence of Cryoprocessing on Mechanism of Carbide Development in Cobalt-Bearing High-Speed Steel (M35) Metall. Mater. Trans. A. 2014;45:1508–1516. doi: 10.1007/s11661-013-2067-2. DOI
Gogte C.L., Peshwe D.R., Paretkar R.K. Influence of Cobalt on the Cryogenically Treated W-Mo-V High Speed Steel. AIP Conf. Proc. 2012;1434:1175–1182. doi: 10.1063/1.4707039. DOI
Gogte C., Peshwe D.R., Likhite A., Lomte S. On the Mechanism of the Effect of Cryogenic Treatment on High Speed Steels. Adv. Mat. Res. 2011;383–390:7138–7142. doi: 10.4028/www.scientific.net/AMR.383-390.7138. DOI
Jovičevič-Klug P., Tegg L., Jovičevič-Klug M., Parmar R., Amati M., Gregoratti L., Almasy L., Cairney J.M., Podgornik B. Understanding carbide evolution and surface chemistry during deep cryogenic treatment in high-alloyed ferrous alloy. Appl. Surf. Sci. 2023;610:155497. doi: 10.1016/j.apsusc.2022.155497. DOI
Firouzdor V., Nejati E., Khomamizadeh F. Effect of deep cryogenic treatment on wear resistance and tool life of M2 HSS drill. J. Mater. Proc. Technol. 2008;206:467–472. doi: 10.1016/j.jmatprotec.2007.12.072. DOI
Savaş A.F., Öktem H., Öztürk B., Uygur İ., Küçük Ö. Energy consumption, mechanical and metallographic properties of cryogenically treated tool steels. Open Chem. 2023;21:20220322. doi: 10.1515/chem-2022-0322. DOI
Xu G., Huang P., Wei Z., Feng Z., Zu G. Microstructural variations and mechanical properties of deep cryogenic treated AISI M35 high speed steel tempered at various temperatures. J. Mater. Res. Technol. 2022;17:3371–3383. doi: 10.1016/j.jmrt.2022.02.083. DOI
Jovičevič-Klug P., Sedlaček M., Jovičevič-Klug M., Podgornik B. Effect of Deep Cryogenic Treatment on Wear and Galling Properties of High-Speed Steels. Materials. 2021;14:7561. doi: 10.3390/ma14247561. PubMed DOI PMC
Marines I., Dominguez G., Baudry G., Vittori J.F., Rathery S., Doucet J.P., Bathias C. Ultrasonic fatigue tests on bearing steel AISI-SAE 52100 at frequency of 20 and 30 kHz. Int. J. Fatigue. 2003;25:1037–1046. doi: 10.1016/S0142-1123(03)00161-0. DOI
Bai L., Yang M., Li J. Numerical Simulation of Electro-Slag Remelting Process Solidification Structure of Cr-Co-Mo-Ni Bearing Steel. Mater. Sci. Forum. 2013;749:96–104. doi: 10.4028/www.scientific.net/MSF.749.96. DOI
Wei X., Zhang X., He W., Li J., Zhang J., Li D., Li S. Influence of Deep Cryogenic Treatment on Microstructural Evolution and Transformation Kinetics Simulation by Finite Element Method of Low-Carbon High-Alloy Martensitic-Bearing Steel. Steel Res. Int. 2022;93:2100785. doi: 10.1002/srin.202100785. DOI
Yıldız E., Özbek N.A. Effect of Cryogenic Treatment and Tempering Temperature on Mechanical and Microstructural Properties of AISI 431 Steel. Int. J. 3d Print. Technol. Digit. Ind. 2022;6:74–82. doi: 10.46519/ij3dptdi.1092720. DOI
Yang Z., Liu Z., Liang J., Yang Z., Sheng G. Elucidating the role of secondary cryogenic treatment on mechanical properties of a martensitic ultra-high strength stainless steel. Mater. Charact. 2021;178:111277. doi: 10.1016/j.matchar.2021.111277. DOI
Nishiyama Z. Martensitic Transformation. 1st ed. Academic Press; New York, NY, USA: 1978.
Dlouhý I., Chlup Z., Hadraba Z. Influence of surface hardening on fracture behaviour of steels. In: Stolař P., editor. Proceedings of the International Conference Heat Treatment and Surface Engineering; Jihlava, Czech Republic. 24–25 November 2009; pp. 111–120. (In Czech)
Schmidt I., Schuchert A. Unlubricated sliding wear of austempered ductile iron. Z. Metall. 1987;78:871–875. doi: 10.1515/ijmr-1987-781208. DOI
Johansson M. Austenitic-Bainitic Ductile Iron. Trans. AFS. 1977;85:117–122.
Hahn G.T., Rosefield A.R. Applications Related Phenomena in Titanium Alloys. American Society for Testing and Materials; Philadelphia, PA, USA: 1968. pp. 5–22. ASTM STP 432.
Putatunda S.K. Fracture toughness of a high carbon and high silicon steel. Mater. Sci. Eng. A. 2001;297:31–43. doi: 10.1016/S0921-5093(00)01272-7. DOI
Zhirafar S., Rezaeia A., Pugh M. Effect of cryogenic treatment on the mechanical properties of 4340 steel. J. Mater. Process. Technol. 2007;186:298–303. doi: 10.1016/j.jmatprotec.2006.12.046. DOI
Holm T., Olsson P., Troell E. Steel and Its Heat Treatments—A Handbook. Swerea IVF; Stockholm, Sweden: 2012.
Zimmerman C., Hall J., McCurdy D., Jamieson E. Comparison of residual stresses from atmosphere and low pressure carburization. Heat Treat. Prog. 2007;7:41–46.
Wang M., Li W., Wu Y., Li S., Cai C., Wen S., Wei Q., Shi Y., Ye F., Chen Z. High-temperature properties and microstructural stability of the AISI H13 hot-work tool steel processed by selective laser melting. Metall. Mater. Trans. B. 2019;50:531–542. doi: 10.1007/s11663-018-1442-1. DOI
Ning A., Yue S., Gao R., Li L., Guo H. Influence of Tempering Time on the Behavior of Large Carbides’ Coarsening in AISI H13 Steel. Metals. 2019;9:1283. doi: 10.3390/met9121283. DOI
Rogal L., Dutkiewicz J., Szklarz Z., Krawiec H., Kot M., Zimowski S. Mechanical properties and corrosion resistance of steel X210CrW12 after semi-solid processing and heat treatment. Mater. Charact. 2014;88:100–110. doi: 10.1016/j.matchar.2013.11.015. DOI
Kawalec M., Krawiec H. Corrosion Resistance of High-Alloyed White Cast Iron. Arch. Metall. Mater. 2015;60:301–303. doi: 10.1515/amm-2015-0048. DOI
Abd El-Aziz K., Zohdy K., Saber D., Sallam H.E.M. Wear and Corrosion Behavior of High-Cr White Cast Iron Alloys in Different Corrosive Media. J. Bio Tribo Corros. 2015;1:25. doi: 10.1007/s40735-015-0026-8. DOI
Tang X.H., Chung R., Li D.Y., Hinckley B., Dolman K. Variations in microstructure of high chromium cast irons and resultant changes in resistance to wear, corrosion and corrosive wear. Wear. 2009;267:116–121. doi: 10.1016/j.wear.2008.11.025. DOI
Tang X.H., Chung R., Pang C.J., Li D.Y., Hinckley B., Dolman K. Microstructure of high (45 wt.%) chromium cast irons and their resistances to wear and corrosion. Wear. 2011;271:1426–1431. doi: 10.1016/j.wear.2010.11.047. DOI
Wiengmoon A., Pearce J.T.H., Chairuangsri T. Relationship between microstructure, hardness and corrosion resistance in 20 wt.%Cr, 27 wt.%Cr and 36 wt.%Cr high chromium cast irons. Mater. Chem. Phys. 2011;125:739–748. doi: 10.1016/j.matchemphys.2010.09.064. DOI
Kulmburg A., Putzgruber E., Korntheurer F., Kaiser E. Beitrag zum Tiefkühlen von Schnellarbeitsstählen. HTM J. Heat Treat. Mater. 1992;47:318–323. doi: 10.1515/htm-1992-470510. (In German) DOI
Berns H., Bröckmann C. Fracture of Hot Formed Ledeburitic Chromium Steels. Eng. Fract. Mech. 1997;58:311–325. doi: 10.1016/S0013-7944(97)00118-5. DOI
Fontalvo G.A., Humer R., Mitterer C., Sammt K., Schemmel I. Microstructural aspects determining the adhesive wear of tool steels. Wear. 2006;260:1028–1034. doi: 10.1016/j.wear.2005.07.001. DOI
Gaard A., Krakhmalev P., Bergström J. Influence of tool steel microstructure on origin of galling initiation and wear mechanisms under dry sliding against a carbon steel sheet. Wear. 2009;267:387–393. doi: 10.1016/j.wear.2008.11.013. DOI
Karlsson P., Gaard A., Krakhmalev P., Bergström J. Galling resistance and wear mechanisms for cold-work tool steels in lubricated sliding against high strength stainless steel sheets. Wear. 2012;286–287:92–97. doi: 10.1016/j.wear.2011.04.002. DOI
Naravade R.H., Gujar U.N., Kharde R.R. Optimization of Cryogenic Treatment on Wear Behaviour of D6 Tool Steel by Using DOE/RSM. Int. J. Eng. Adv. Technol. 2012;2:239–244.
Standard Test Method for Wear Testing with a Pin-On-Disk Apparatus. ASTM International; West Conshohocken, PA, USA: 2000.
Wu J., Wang B., Zhang Y., Liu R., Xia Y., Li G., Xue W. Enhanced wear and corrosion resistance of plasma electrolytic carburized layer on T8 carbon steel. Mat. Chem. Phys. 2016;171:50–56. doi: 10.1016/j.matchemphys.2015.09.047. DOI
Hoyle G. High Speed Steels. Butterworths; London, UK: 1988.
Pellizzari M., Molinari A., Giraldini L. Deep cryogenic treatment of AISI M2 high-speed steel. Int. J. Microstruct. Mater. Prop. 2008;3:383–389. doi: 10.1504/IJMMP.2008.018742. DOI
Bergman F., Hedenqvist P., Hogmark S. The influence of primary carbides and test parameters on abrasive and erosive wear of selected PM high speed steels. Tribol. Int. 1997;30:183–191. doi: 10.1016/S0301-679X(96)00040-0. DOI
Badisch E., Mitterer C. Abrasive wear of high speed steels: Influence of abrasive particles and primary carbides on wear resistance. Tribol. Int. 2003;36:765–770. doi: 10.1016/S0301-679X(03)00058-6. DOI