The molecular landscape of ETMR at diagnosis and relapse
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R15 ES019128
NIEHS NIH HHS - United States
TL1 TR002647
NCATS NIH HHS - United States
T32 CA148724
NCI NIH HHS - United States
P30 CA054174
NCI NIH HHS - United States
K22 ES012264
NIEHS NIH HHS - United States
R01 CA152063
NCI NIH HHS - United States
PubMed
31802000
PubMed Central
PMC6908757
DOI
10.1038/s41586-019-1815-x
PII: 10.1038/s41586-019-1815-x
Knihovny.cz E-zdroje
- MeSH
- DEAD-box RNA-helikasy genetika MeSH
- DNA-topoisomerasy I genetika MeSH
- germinální a embryonální nádory diagnóza genetika MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- mikro RNA genetika MeSH
- mutace MeSH
- PARP inhibitory MeSH
- poly(ADP-ribosa)polymerasy genetika MeSH
- recidiva MeSH
- ribonukleasa III genetika MeSH
- RNA dlouhá nekódující MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- DEAD-box RNA-helikasy MeSH
- DICER1 protein, human MeSH Prohlížeč
- DNA-topoisomerasy I MeSH
- mikro RNA MeSH
- MIR17HG, human MeSH Prohlížeč
- PARP inhibitory MeSH
- poly(ADP-ribosa)polymerasy MeSH
- ribonukleasa III MeSH
- RNA dlouhá nekódující MeSH
- TOP1 protein, human MeSH Prohlížeč
Embryonal tumours with multilayered rosettes (ETMRs) are aggressive paediatric embryonal brain tumours with a universally poor prognosis1. Here we collected 193 primary ETMRs and 23 matched relapse samples to investigate the genomic landscape of this distinct tumour type. We found that patients with tumours in which the proposed driver C19MC2-4 was not amplified frequently had germline mutations in DICER1 or other microRNA-related aberrations such as somatic amplification of miR-17-92 (also known as MIR17HG). Whole-genome sequencing revealed that tumours had an overall low recurrence of single-nucleotide variants (SNVs), but showed prevalent genomic instability caused by widespread occurrence of R-loop structures. We show that R-loop-associated chromosomal instability can be induced by the loss of DICER1 function. Comparison of primary tumours and matched relapse samples showed a strong conservation of structural variants, but low conservation of SNVs. Moreover, many newly acquired SNVs are associated with a mutational signature related to cisplatin treatment. Finally, we show that targeting R-loops with topoisomerase and PARP inhibitors might be an effective treatment strategy for this deadly disease.
2nd Department of Pediatrics Semmelweis University Budapest Hungary
Aix Marseille University Neurophysiopathology Institute CNRS Marseille France
Ann and Robert H Lurie Children's Hospital of Chicago Chicago IL USA
Clinical Cooperation Unit Neuropathology German Cancer Research Center Heidelberg Germany
Clinical Cooperation Unit Pediatric Oncology German Cancer Research Center Heidelberg Germany
Department of Cell Systems and Anatomy University of Texas Health at San Antonio San Antonio TX USA
Department of Neuropathology Heidelberg University Hospital Heidelberg Germany
Department of Neuropathology NN Burdenko Neurosurgical Institute Moscow Russia
Department of Oncogenomics Academic Medical Center Amsterdam The Netherlands
Department of Pathology Amsterdam University Medical Centers location VUmc Amsterdam The Netherlands
Department of Pathology and Laboratory Medicine University of Calgary Calgary Alberta Canada
Department of Pathology APHM Marseille France
Department of Pathology Boston Children's Hospital Harvard Medical School Boston MA USA
Department of Pathology Children's Memorial Health Institute Warsaw Poland
Department of Pathology Montpellier University Medical Center Montpellier France
Department of Pathology NYU Langone Health New York NY USA
Department of Pathology St Jude Children's Research Hospital Memphis TN USA
Department of Pathology Toulouse University Hospital Toulouse France
Department of Pediatric Hematology and Oncology University Hospital Motol Prague Czech Republic
Department of Pediatric Oncology Hematology Charité University Medicine Berlin Germany
Department of Pediatrics McGill University Health Center McGill University Montreal Quebec Canada
Division of Molecular Genetics German Cancer Research Center Heidelberg Germany
Division of Pediatric Neurooncology German Cancer Research Center Heidelberg Germany
European Molecular Biology Laboratory Genome Biology Unit Heidelberg Germany
German Cancer Consortium Heidelberg Germany
Hopp Children's Cancer Center Heidelberg Germany
INSERM U1037 Cancer Research Center of Toulouse Toulouse France
Institute of Neurology Medical University of Vienna Vienna Austria
Institute of Neuropathology University Hospital Münster Münster Germany
Institute of Neuropathology University Medical Center Hamburg Eppendorf Hamburg Germany
IRCCS Neuromed Mediterranean Neurological Institute Pozzilli Italy
Mays Cancer Center University of Texas Health at San Antonio San Antonio TX USA
Northwestern University Feinberg School of Medicine Chicago IL USA
Omics IT and Data Management Core Facility German Cancer Research Center Heidelberg Germany
Pediatric Glioma Research Group German Cancer Research Center Heidelberg Germany
Pediatric Oncology Department SIREDO Pediatric Oncology Centre Curie Institute Paris France
Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
Zobrazit více v PubMed
Korshunov A et al. Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity. Acta Neuropathol 128, 279–289, doi:10.1007/s00401-013-1228-0 (2014). PubMed DOI PMC
Eberhart CG, Brat DJ, Cohen KJ & Burger PC Pediatric neuroblastic brain tumors containing abundant neuropil and true rosettes. Pediatr Dev Pathol 3, 346–352 (2000). PubMed
Pfister S et al. Novel genomic amplification targeting the microRNA cluster at 19q13.42 in a pediatric embryonal tumor with abundant neuropil and true rosettes. Acta Neuropathol 117, 457–464, doi:10.1007/s00401-008-0467-y (2009). PubMed DOI
Li M et al. Frequent amplification of a chr19q13.41 microRNA polycistron in aggressive primitive neuroectodermal brain tumors. Cancer Cell 16, 533–546, doi:10.1016/j.ccr.2009.10.025 (2009). PubMed DOI PMC
Kleinman CL et al. Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR. Nat Genet 46, 39–44, doi:10.1038/ng.2849 (2014). PubMed DOI
Sturm D et al. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell 164, 1060–1072, doi:10.1016/j.cell.2016.01.015 (2016). PubMed DOI PMC
Capper D et al. DNA methylation-based classification of central nervous system tumours. Nature 555, 469–474, doi:10.1038/nature26000 (2018). PubMed DOI PMC
Pearl LH, Schierz AC, Ward SE, Al-Lazikani B & Pearl FM Therapeutic opportunities within the DNA damage response. Nat Rev Cancer 15, 166–180, doi:10.1038/nrc3891 (2015). PubMed DOI
Newman AM et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12, 453–457, doi:10.1038/nmeth.3337 (2015). PubMed DOI PMC
Zhong S et al. A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex. Nature 555, 524–528, doi:10.1038/nature25980 (2018). PubMed DOI
Neumann JE et al. A mouse model for embryonal tumors with multilayered rosettes uncovers the therapeutic potential of Sonic-hedgehog inhibitors. Nat Med 23, 1191–1202, doi:10.1038/nm.4402 (2017). PubMed DOI
Anglesio MS et al. Cancer-associated somatic DICER1 hotspot mutations cause defective miRNA processing and reverse-strand expression bias to predominantly mature 3p strands through loss of 5p strand cleavage. J Pathol 229, 400–409, doi:10.1002/path.4135 (2013). PubMed DOI
Grobner SN et al. The landscape of genomic alterations across childhood cancers. Nature 555, 321–327, doi:10.1038/nature25480 (2018). PubMed DOI
Alexandrov LB et al. Signatures of mutational processes in human cancer. Nature 500, 415–421, doi:10.1038/nature12477 (2013). PubMed DOI PMC
Szikriszt B et al. A comprehensive survey of the mutagenic impact of common cancer cytotoxics. Genome Biol 17, 99, doi:10.1186/s13059-016-0963-7 (2016). PubMed DOI PMC
Boot A et al. In-depth characterization of the cisplatin mutational signature in human cell lines and in esophageal and liver tumors. Genome Res 28, 654–665, doi:10.1101/gr.230219.117 (2018). PubMed DOI PMC
Maciejowski J, Li Y, Bosco N, Campbell PJ & de Lange T Chromothripsis and Kataegis Induced by Telomere Crisis. Cell 163, 1641–1654, doi:10.1016/j.cell.2015.11.054 (2015). PubMed DOI PMC
Santos-Pereira JM & Aguilera A R loops: new modulators of genome dynamics and function. Nat Rev Genet 16, 583–597, doi:10.1038/nrg3961 (2015). PubMed DOI
El Hage A, French SL, Beyer AL & Tollervey D Loss of Topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes Dev 24, 1546–1558, doi:10.1101/gad.573310 (2010). PubMed DOI PMC
Jenjaroenpun P, Wongsurawat T, Yenamandra SP & Kuznetsov VA QmRLFS-finder: a model, web server and stand-alone tool for prediction and analysis of R-loop forming sequences. Nucleic Acids Res 43, 10081, doi:10.1093/nar/gkv974 (2015). PubMed DOI PMC
Gorthi A et al. EWS-FLI1 increases transcription to cause R-loops and block BRCA1 repair in Ewing sarcoma. Nature 555, 387–391, doi:10.1038/nature25748 (2018). PubMed DOI PMC
Kloosterman WP et al. Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms. Cell Rep 1, 648–655, doi:10.1016/j.celrep.2012.05.009 (2012). PubMed DOI
Gan W et al. R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev 25, 2041–2056, doi:10.1101/gad.17010011 (2011). PubMed DOI PMC
Lu WT et al. Drosha drives the formation of DNA:RNA hybrids around DNA break sites to facilitate DNA repair. Nat Commun 9, 532, doi:10.1038/s41467-018-02893-x (2018). PubMed DOI PMC
Castel SE et al. Dicer promotes transcription termination at sites of replication stress to maintain genome stability. Cell 159, 572–583, doi:10.1016/j.cell.2014.09.031 (2014). PubMed DOI PMC
Francia S et al. Site-specific DICER and DROSHA RNA products control the DNA-damage response. Nature 488, 231–235, doi:10.1038/nature11179 (2012). PubMed DOI PMC
Schmidt C et al. Preclinical drug screen reveals topotecan, actinomycin D, and volasertib as potential new therapeutic candidates for ETMR brain tumor patients. Neuro Oncol 19, 1607–1617, doi:10.1093/neuonc/nox093 (2017). PubMed DOI PMC
Staker BL et al. The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc Natl Acad Sci U S A 99, 15387–15392, doi:10.1073/pnas.242259599 (2002). PubMed DOI PMC
Das SK et al. Poly(ADP-ribose) polymers regulate DNA topoisomerase I (Top1) nuclear dynamics and camptothecin sensitivity in living cells. Nucleic Acids Res 44, 8363–8375, doi:10.1093/nar/gkw665 (2016). PubMed DOI PMC
Bennasser Y et al. Competition for XPO5 binding between Dicer mRNA, pre-miRNA and viral RNA regulates human Dicer levels. Nat Struct Mol Biol 18, 323–327, doi:10.1038/nsmb.1987 (2011). PubMed DOI PMC
Grimm D et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441, 537–541, doi:10.1038/nature04791 (2006). PubMed DOI
Schultz KAP et al. PTEN, DICER1, FH, and Their Associated Tumor Susceptibility Syndromes: Clinical Features, Genetics, and Surveillance Recommendations in Childhood. Clin Cancer Res 23, e76–e82, doi:10.1158/1078-0432.CCR-17-0629 (2017). PubMed DOI
Seki M et al. Biallelic DICER1 mutations in sporadic pleuropulmonary blastoma. Cancer Res 74, 2742–2749, doi:10.1158/0008-5472.CAN-13-2470 (2014). PubMed DOI
Koelsche C et al. Primary intracranial spindle cell sarcoma with rhabdomyosarcoma-like features share a highly distinct methylation profile and DICER1 mutations. Acta Neuropathol 136, 327–337, doi:10.1007/s00401-018-1871-6 (2018). PubMed DOI
Hovestadt V et al. Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays. Acta Neuropathol 125, 913–916, doi:10.1007/s00401-013-1126-5 (2013). PubMed DOI PMC
Spence T et al. A novel C19MC amplified cell line links Lin28/let-7 to mTOR signaling in embryonal tumor with multilayered rosettes. Neuro Oncol 16, 62–71, doi:10.1093/neuonc/not162 (2014). PubMed DOI PMC
Sahm F et al. Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets. Acta Neuropathol 131, 903–910, doi:10.1007/s00401-015-1519-8 (2016). PubMed DOI
Jones DT et al. Dissecting the genomic complexity underlying medulloblastoma. Nature 488, 100–105, doi:10.1038/nature11284 (2012). PubMed DOI PMC
Uro-Coste E et al. ETMR-like infantile cerebellar embryonal tumors in the extended morphologic spectrum of DICER1-related tumors. Acta Neuropathol, doi:10.1007/s00401-018-1935-7 (2018). PubMed DOI
Leek JT, Johnson WE, Parker HS, Jaffe AE & Storey JD The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883, doi:10.1093/bioinformatics/bts034 (2012). PubMed DOI PMC
van der Maaten L & Hinton G Visualizing Data using t-SNE. J Mach Learn Res 9, 2579–2605 (2008).
Li H et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079, doi:10.1093/bioinformatics/btp352 (2009). PubMed DOI PMC
Kool M et al. Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell 25, 393–405, doi:10.1016/j.ccr.2014.02.004 (2014). PubMed DOI PMC
Wang K, Li M & Hakonarson H ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38, e164, doi:10.1093/nar/gkq603 (2010). PubMed DOI PMC
Kircher M et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 46, 310–315, doi:10.1038/ng.2892 (2014). PubMed DOI PMC
Waszak SM et al. Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncol 19, 785–798, doi:10.1016/S1470-2045(18)30242-0 (2018). PubMed DOI PMC
Consortium EP An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74, doi:10.1038/nature11247 (2012). PubMed DOI PMC
Koboldt DC et al. VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics 25, 2283–2285, doi:10.1093/bioinformatics/btp373 (2009). PubMed DOI PMC
Haradhvala NJ et al. Mutational Strand Asymmetries in Cancer Genomes Reveal Mechanisms of DNA Damage and Repair. Cell 164, 538–549, doi:10.1016/j.cell.2015.12.050 (2016). PubMed DOI PMC
Blokzijl F, Janssen R, van Boxtel R & Cuppen E MutationalPatterns: comprehensive genome-wide analysis of mutational processes. Genome Med 10, 33, doi:10.1186/s13073-018-0539-0 (2018). PubMed DOI PMC
Johann PD et al. Atypical Teratoid/Rhabdoid Tumors Are Comprised of Three Epigenetic Subgroups with Distinct Enhancer Landscapes. Cancer Cell 29, 379–393, doi:10.1016/j.ccell.2016.02.001 (2016). PubMed DOI
Northcott PA et al. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature 511, 428–434, doi:10.1038/nature13379 (2014). PubMed DOI PMC
Chen J, Bardes EE, Aronow BJ & Jegga AG ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 37, W305–311, doi:10.1093/nar/gkp427 (2009). PubMed DOI PMC
Huang da W, Sherman BT & Lempicki RA Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4, 44–57, doi:10.1038/nprot.2008.211 (2009). PubMed DOI
Wei Q, Khan IK, Ding Z, Yerneni S & Kihara D NaviGO: interactive tool for visualization and functional similarity and coherence analysis with gene ontology. BMC Bioinformatics 18, 177, doi:10.1186/s12859-017-1600-5 (2017). PubMed DOI PMC
Bray NL, Pimentel H, Melsted P & Pachter L Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34, 525–527, doi:10.1038/nbt.3519 (2016). PubMed DOI
Hovestadt V et al. Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature 510, 537–541, doi:10.1038/nature13268 (2014). PubMed DOI
Hafner M et al. Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods 44, 3–12, doi:10.1016/j.ymeth.2007.09.009 (2008). PubMed DOI PMC
Anders S & Huber W Differential expression analysis for sequence count data. Genome Biol 11, R106, doi:10.1186/gb-2010-11-10-r106 (2010). PubMed DOI PMC
Kozomara A & Griffiths-Jones S miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42, D68–73, doi:10.1093/nar/gkt1181 (2014). PubMed DOI PMC
Ramirez F, Dundar F, Diehl S, Gruning BA & Manke T deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res 42, W187–191, doi:10.1093/nar/gku365 (2014). PubMed DOI PMC
Cer RZ et al. Non-B DB v2.0: a database of predicted non-B DNA-forming motifs and its associated tools. Nucleic Acids Res 41, D94–D100, doi:10.1093/nar/gks955 (2013). PubMed DOI PMC
Korshunov A et al. Focal genomic amplification at 19q13.42 comprises a powerful diagnostic marker for embryonal tumors with ependymoblastic rosettes. Acta Neuropathol 120, 253–260, doi:10.1007/s00401-010-0688-8 (2010). PubMed DOI
Sanz LA et al. Prevalent, Dynamic, and Conserved R-Loop Structures Associate with Specific Epigenomic Signatures in Mammals. Mol Cell 63, 167–178, doi:10.1016/j.molcel.2016.05.032 (2016). PubMed DOI PMC
Chou TC Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70, 440–446, doi:10.1158/0008-5472.CAN-09-1947 (2010). PubMed DOI
Anderson ND et al. Rearrangement bursts generate canonical gene fusions in bone and soft tissue tumors. Science 361, doi:10.1126/science.aam8419 (2018). PubMed DOI PMC