• This record comes from PubMed

Comprehensive Assessment of BARD1 Messenger Ribonucleic Acid Splicing With Implications for Variant Classification

. 2019 ; 10 () : 1139. [epub] 20191119

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Introduction: Case-control analyses have shown BARD1 variants to be associated with up to >2-fold increase in risk of breast cancer, and potentially greater risk of triple negative breast cancer. BARD1 is included in several gene sequencing panels currently marketed for the prediction of risk of cancer, however there are no gene-specific guidelines for the classification of BARD1 variants. We present the most comprehensive assessment of BARD1 messenger RNA splicing, and demonstrate the application of these data for the classification of truncating and splice site variants according to American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) guidelines. Methods: Nanopore sequencing, short-read RNA-seq (whole transcriptome and targeted), and capillary electrophoresis analysis were performed by four laboratories to investigate alternative BARD1 splicing in blood, breast, and fimbriae/ovary related specimens from non-cancer affected tissues. Splicing data were also collated from published studies of nine different tissues. The impact of the findings for PVS1 annotation was assessed for truncating and splice site variants. Results: We identified 62 naturally occurring alternative spliced BARD1 splicing events, including 19 novel events found by next generation sequencing and/or reverse transcription PCR analysis performed for this study. Quantitative analysis showed that naturally occurring splicing events causing loss of clinically relevant domains or nonsense mediated decay can constitute up to 11.9% of overlapping natural junctions, suggesting that aberrant splicing can be tolerated up to this level. Nanopore sequencing of whole BARD1 transcripts characterized 16 alternative isoforms from healthy controls, revealing that the most complex transcripts combined only two alternative splicing events. Bioinformatic analysis of ClinVar submitted variants at or near BARD1 splice sites suggest that all consensus splice site variants in BARD1 should be considered likely pathogenic, with the possible exception of variants at the donor site of exon 5. Conclusions: No BARD1 candidate rescue transcripts were identified in this study, indicating that all premature translation-termination codons variants can be annotated as PVS1. Furthermore, our analysis suggests that all donor and acceptor (IVS+/-1,2) variants can be considered PVS1 or PVS1_strong, with the exception of variants targeting the exon 5 donor site, that we recommend considering as PVS1_moderate.

See more in PubMed

Abou Tayoun A. N., Pesaran T., DiStefano M. T., Oza A., Rehm H. L., Biesecker L. G., et al. (2018). Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion. Hum. Mutat. 39 (11), 1517–1524. 10.1002/humu.23626 PubMed DOI PMC

Bosse K. R., Diskin S. J., Cole K. A., Wood A. C., Schnepp R. W., Norris G., et al. (2012). Common variation at BARD1 results in the expression of an oncogenic isoform that influences neuroblastoma susceptibility and oncogenicity. Cancer Res. 72 (8), 2068–2078. 10.1158/0008-5472.CAN-11-3703 PubMed DOI PMC

Couch F. J., Shimelis H., Hu C., Hart S. N., Polley E. C., Na J., et al. (2017). Associations between cancer predisposition testing panel genes and breast cancer. JAMA Oncol. 3 (9), 1190–1196. 10.1001/jamaoncol.2017.0424 PubMed DOI PMC

Davy G., Rousselin A., Goardon N., Castera L., Harter V., Legros A., et al. (2017). Detecting splicing patterns in genes involved in hereditary breast and ovarian cancer. Eur. J. Hum. Genet. 25 (10), 1147–1154. 10.1038/ejhg.2017.116 PubMed DOI PMC

De Brakeleer S., De Greve J., Loris R., Janin N., Lissens W., Sermijn E., et al. (2010). Cancer predisposing missense and protein truncating BARD1 mutations in non-BRCA1 or BRCA2 breast cancer families. Hum. Mutat. 31 (3), E1175–E1185. 10.1002/humu.21200 PubMed DOI

de Jong L. C., Cree S., Lattimore V., Wiggins G. A. R., Spurdle A. B., ConFab I., et al. (2017). Nanopore sequencing of full-length BRCA1 mRNA transcripts reveals co-occurrence of known exon skipping events. Breast Cancer Res. 19 (1), 127. 10.1186/s13058-017-0919-1 PubMed DOI PMC

de la Hoya M., Soukarieh O., Lopez-Perolio I., Vega A., Walker L. C., van Ierland Y., et al. (2016). Combined genetic and splicing analysis of BRCA1 c.[594-2A > C; 641A > G] highlights the relevance of naturally occurring in-frame transcripts for developing disease gene variant classification algorithms. Hum. Mol. Genet. 25 (11), 2256–2268. 10.1093/hmg/ddw094 PubMed DOI PMC

Hojny J., Zemankova P., Lhota F., Sevcik J., Stranecky V., Hartmannova H., et al. (2017). Multiplex PCR and NGS-based identification of mRNA splicing variants: Analysis of BRCA1 splicing pattern as a model. Gene 637, 41–49. 10.1016/j.gene.2017.09.025 PubMed DOI

Irminger-Finger I., Leung W. C., Li J., Dubois-Dauphin M., Harb J., Feki A., et al. (2001). Identification of BARD1 as mediator between proapoptotic stress and p53-dependent apoptosis. Mol. Cell 8 (6), 1255–1266. 10.1016/s1097-2765(01)00406-3 PubMed DOI

Ishitobi M., Miyoshi Y., Hasegawa S., Egawa C., Tamaki Y., Monden M., et al. (2003). Mutational analysis of BARD1 in familial breast cancer patients in Japan. Cancer Lett. 200 (1), 1–7. 10.1016/s0304-3835(03)00387-2 PubMed DOI

Karppinen S. M., Heikkinen K., Rapakko K., Winqvist R. (2004). Mutation screening of the BARD1 gene: evidence for involvement of the Cys557Ser allele in hereditary susceptibility to breast cancer. J. Med. Genet. 41 (9), e114. 10.1136/jmg.2004.020669 PubMed DOI PMC

Kurian A. W., Hughes E., Handorf E. A., Gutin A., Allen B., Hartman A. R., et al. (2017). Breast and ovarian cancer penetrance estimates derived from germline multiple-gene sequencing results in women. JCO Precis. Oncol. 1, 1–12. 10.1200/PO.16.00066 PubMed DOI

Lattimore V. L., Pearson J. F., Currie M. J., Spurdle A. B., ConFab I., Robinson B. A., et al. (2018). Investigation of experimental factors that underlie brca1/2 mrna isoform expression variation: recommendations for utilizing targeted RNA sequencing to evaluate potential spliceogenic variants. Front. Oncol. 8, 140. 10.3389/fonc.2018.00140 PubMed DOI PMC

Li L., Ryser S., Dizin E., Pils D., Krainer M., Jefford C. E., et al. (2007). Oncogenic BARD1 isoforms expressed in gynecological cancers. Cancer Res. 67 (24), 11876–11885. 10.1158/0008-5472.CAN-07-2370 PubMed DOI

Lombardi G., Falaschi E., Di Cristofano C., Naccarato A. G., Sensi E., Aretini P., et al. (2007). Identification of novel alternatively spliced BRCA1-associated RING domain (BARD1) messenger RNAs in human peripheral blood lymphocytes and in sporadic breast cancer tissues. Genes Chromosomes Cancer 46 (9), 791–795. 10.1002/gcc.20460 PubMed DOI

Lopez-Perolio I., Leman R., Behar R., Lattimore V., Pearson J. F., Castera L., et al. (2019). Alternative splicing and ACMG-AMP-2015-based classification of PALB2 genetic variants: an ENIGMA report. J. Med. Genet. 56 (7), 453–460. 10.1136/jmedgenet-2018-105834 PubMed DOI PMC

McCarthy E. E., Celebi J. T., Baer R., Ludwig T. (2003). Loss of Bard1, the heterodimeric partner of the Brca1 tumor suppressor, results in early embryonic lethality and chromosomal instability. Mol. Cell Biol. 23 (14), 5056–5063. 10.1128/mcb.23.14.5056-5063.2003 PubMed DOI PMC

Miki Y., Swensen J., Shattuck-Eidens D., Futreal P. A., Harshman K., Tavtigian S., et al. (1994). A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266 (5182), 66–71. 10.1126/science.7545954 PubMed DOI

Nieuwenhuis M. H., Vasen H. F. (2007). Correlations between mutation site in APC and phenotype of familial adenomatous polyposis (FAP): a review of the literature. Crit. Rev. Oncol. Hematol. 61 (2), 153–161. 10.1016/j.critrevonc.2006.07.004 PubMed DOI

Pilyugin M., Irminger-Finger I. (2014). Long non-coding RNA and microRNAs might act in regulating the expression of BARD1 mRNAs. Int. J. Biochem. Cell Biol. 54, 356–367. 10.1016/j.biocel.2014.06.018 PubMed DOI

Ratajska M., Antoszewska E., Piskorz A., Brozek I., Borg A., Kusmierek H., et al. (2012). Cancer predisposing BARD1 mutations in breast-ovarian cancer families. Breast Cancer Res. Treat 131 (1), 89–97. 10.1007/s10549-011-1403-8 PubMed DOI

Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., et al. (2015). Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17 (5), 405–424. 10.1038/gim.2015.30 PubMed DOI PMC

Ryser S., Dizin E., Jefford C. E., Delaval B., Gagos S., Christodoulidou A., et al. (2009). Distinct roles of BARD1 isoforms in mitosis: full-length BARD1 mediates Aurora B degradation, cancer-associated BARD1beta scaffolds Aurora B and BRCA2. Cancer Res. 69 (3), 1125–1134. 10.1158/0008-5472.CAN-08-2134 PubMed DOI

Scotti M. M., Swanson M. S. (2016). RNA mis-splicing in disease. Nat. Rev. Genet. 17 (1), 19–32. 10.1038/nrg.2015.3 PubMed DOI PMC

Shimelis H., LaDuca H., Hu C., Hart S. N., Na J., Thomas A., et al. (2018). Triple-negative breast cancer risk genes identified by multigene hereditary cancer panel testing. J. Natl. Cancer Inst. 110 (8), 855–862. 10.1093/jnci/djy106 PubMed DOI PMC

Slavin T. P., Maxwell K. N., Lilyquist J., Vijai J., Neuhausen S. L., Hart S. N., et al. (2017). The contribution of pathogenic variants in breast cancer susceptibility genes to familial breast cancer risk. NPJ Breast Cancer 3, 22. 10.1038/s41523-017-0024-8 PubMed DOI PMC

Soukupova J., Zemankova P., Lhotova K., Janatova M., Borecka M., Stolarova L., et al. (2018). Validation of CZECANCA (CZEch CAncer paNel for Clinical Application) for targeted NGS-based analysis of hereditary cancer syndromes. PloS One 13 (4), e195761. 10.1371/journal.pone.0195761 PubMed DOI PMC

Sporn J. C., Hothorn T., Jung B. (2011). BARD1 expression predicts outcome in colon cancer. Clin. Cancer Res. 17 (16), 5451–5462. 10.1158/1078-0432.CCR-11-0263 PubMed DOI PMC

Tang A. D., Soulette C. M., van Baren M. J., Hart K., Hrabeta-Robinson E., Wu C. J., et al. (2018). Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns. bioRxiv, 410183. 10.1101/410183 PubMed DOI PMC

Tesoriero A. A., Wong E. M., Jenkins M. A., Hopper J. L., Brown M. A., Chenevix-Trench G., et al. (2005). Molecular characterization and cancer risk associated with BRCA1 and BRCA2 splice site variants identified in multiple-case breast cancer families. Hum. Mutat. 26 (5), 495. 10.1002/humu.9379 PubMed DOI

Walker L. C., Whiley P. J., Couch F. J., Farrugia D. J., Healey S., Eccles D. M., et al. (2010). Detection of splicing aberrations caused by BRCA1 and BRCA2 sequence variants encoding missense substitutions: implications for prediction of pathogenicity. Hum. Mutat. 31 (6), E1484–E1505. 10.1002/humu.21267 PubMed DOI PMC

Walker L. C., Whiley P. J., Houdayer C., Hansen T. V., Vega A., Santamarina M., et al. (2013). Evaluation of a 5-tier scheme proposed for classification of sequence variants using bioinformatic and splicing assay data: inter-reviewer variability and promotion of minimum reporting guidelines. Hum. Mutat. 34 (10), 1424–1431. 10.1002/humu.22388 PubMed DOI

Whiley P. J., Pettigrew C. A., Brewster B. L., Walker L. C., Spurdle A. B., Brown M. A. (2010). Effect of BRCA2 sequence variants predicted to disrupt exonic splice enhancers on BRCA2 transcripts. BMC Med. Genet. 11, 80. 10.1186/1471-2350-11-80 PubMed DOI PMC

Whiley P. J., Guidugli L., Walker L. C., Healey S., Thompson B. A., Lakhani S. R., et al. (2011). Splicing and multifactorial analysis of intronic BRCA1 and BRCA2 sequence variants identifies clinically significant splicing aberrations up to 12 nucleotides from the intron/exon boundary. Hum. Mutat. 32 (6), 678–687. 10.1002/humu.21495 PubMed DOI PMC

Whiley P. J., de la Hoya M., Thomassen M., Becker A., Brandao R., Pedersen I. S., et al. (2014). Comparison of mRNA splicing assay protocols across multiple laboratories: recommendations for best practice in standardized clinical testing. Clin. Chem. 60 (2), 341–352. 10.1373/clinchem.2013.210658 PubMed DOI PMC

Wu L. C., Wang Z. W., Tsan J. T., Spillman M. A., Phung A., Xu X. L., et al. (1996). Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat. Genet. 14 (4), 430–440. 10.1038/ng1296-430 PubMed DOI

Zhang Y. Q., Pilyugin M., Kuester D., Leoni V. P., Li L., Casula G., et al. (2012). Expression of oncogenic BARD1 isoforms affects colon cancer progression and correlates with clinical outcome. Br. J. Cancer 107 (4), 675–683. 10.1038/bjc.2012.297 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...