AIM: In 2005-2006, a chikungunya epidemic of unprecedented magnitude hit Reunion Island, which raised a public health concern through the substantial proportions of long-lasting manifestations. To understand the pathophysiology underlying chronic chikungunya (CC), we designed the CHIKGene cohort study and collected blood samples from 133 subjects diagnosed with CC and from 86 control individuals that had recovered within 3 months, 12-to-15 years after exposure. METHODS: We conducted bulk RNAseq analysis on peripheral blood mononuclear cells to find differentially expressed genes (DEGs), gene set enrichment analysis (GSEA) and gene ontologies to uncover top-level enriched terms associated with DEGs, and weighted gene correlation network analysis (WGCNA) to elucidate underlying cellular processes. RESULTS: Among 1549 DEGs, gene expression analysis identified 10 top genes including NR4A2 and TRIM58 (upregulated in CC), IGHG3 and IGHV3-49 (downregulated in CC) linked to immune regulation, OSBP2 (upregulated in CC) and SEMA6B (downregulated in CC) linked to neuronal homeostasis and axon guidance, respectively. GSEA and WGCNA unveiled cellular processes such as "Metabolism of RNA" and "Cell Cycle". CONCLUSIONS: This study uncovers a shift in gene expression of CC subjects. IGHG3 and IGHV3-49 gene shut-offs spotlight the importance of neutralizing antibodies against chikungunya virus in the progression to chronic disease. Human diseases associations highlight connections to rheumatoid arthritis, nervous and cardiac systems. GSEA and WGCNA bounce the hypotheses of a persistent viral reservoir or an increased susceptibility to RNA viral pathogens with new onset infections. Together, our findings might offer potential targets for therapeutic options aimed at alleviating chronic chikungunya.
- MeSH
- Chronic Disease MeSH
- Adult MeSH
- Chikungunya Fever * genetics epidemiology virology MeSH
- Cohort Studies MeSH
- Leukocytes, Mononuclear MeSH
- Middle Aged MeSH
- Humans MeSH
- Aged MeSH
- Gene Expression Profiling MeSH
- Transcriptome * MeSH
- Chikungunya virus MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Reunion MeSH
In this article, we focused on the impact of precisely chemically modified FLI maturation medium enriched with fibroblast growth factor 2 (FGF2), leukemia inhibitory factor (LIF), insulin-like growth factor 1 (IGF1), and polyvinyl alcohol (PVA) and its potential to improve the efficiency of in vitro production of porcine embryos. We hypothesized that enhancing the composition of the maturation medium could result in an elevated production of embryos in vitro and can affect EGA. FLI medium resulted in a significantly higher rate of oocyte blastocyst maturation and formation compared to the control DMEM medium. In addition, immunocytochemical labelling confirmed the detection of UBF in 4-cell FLI parthenogenic embryos, suggesting similarities with natural embryo development. Through RNAseq analysis, upregulated genes present in 4-cell FLI embryos were found to play key roles in important biological processes such as cell proliferation, cell differentiation, and transcriptional regulation. Based on our findings, we demonstrated the positive influence of FLI medium in the evaluation of in vitro embryo production, EGA detection, transcriptomic and proteomic profile, which was confirmed by the positive activation of the embryonal genome in the 4-cell stage of parthenogenetically activated embryos.
- MeSH
- Blastocyst drug effects metabolism MeSH
- Fertilization in Vitro MeSH
- Fibroblast Growth Factor 2 * pharmacology MeSH
- Insulin-Like Growth Factor I * pharmacology MeSH
- Culture Media * chemistry pharmacology MeSH
- Leukemia Inhibitory Factor * pharmacology MeSH
- Oocytes MeSH
- Swine embryology genetics MeSH
- Proteomics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
In the past decade, single-cell transcriptomics has helped to uncover new cell types and states and led to the construction of a cellular compendium of health and disease. Despite this progress, some difficult-to-sequence cells remain absent from tissue atlases. Eosinophils-elusive granulocytes that are implicated in a plethora of human pathologies1-5-are among these uncharted cell types. The heterogeneity of eosinophils and the gene programs that underpin their pleiotropic functions remain poorly understood. Here we provide a comprehensive single-cell transcriptomic profiling of mouse eosinophils. We identify an active and a basal population of intestinal eosinophils, which differ in their transcriptome, surface proteome and spatial localization. By means of a genome-wide CRISPR inhibition screen and functional assays, we reveal a mechanism by which interleukin-33 (IL-33) and interferon-γ (IFNγ) induce the accumulation of active eosinophils in the inflamed colon. Active eosinophils are endowed with bactericidal and T cell regulatory activity, and express the co-stimulatory molecules CD80 and PD-L1. Notably, active eosinophils are enriched in the lamina propria of a small cohort of patients with inflammatory bowel disease, and are closely associated with CD4+ T cells. Our findings provide insights into the biology of eosinophils and highlight the crucial contribution of this cell type to intestinal homeostasis, immune regulation and host defence. Furthermore, we lay a framework for the characterization of eosinophils in human gastrointestinal diseases.
- MeSH
- Single-Cell Gene Expression Analysis MeSH
- B7-1 Antigen metabolism MeSH
- Eosinophils * classification cytology immunology metabolism MeSH
- Inflammatory Bowel Diseases immunology MeSH
- Immunity * MeSH
- Interferon-gamma MeSH
- Interleukin-33 MeSH
- Colitis * immunology pathology MeSH
- Humans MeSH
- Mice MeSH
- Proteome MeSH
- Intestines * immunology pathology MeSH
- T-Lymphocytes MeSH
- Transcriptome MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Závěrečná zpráva o řešení grantu Agentury pro zdravotnický výzkum MZ ČR
nestr.
V letech 2002-2017 jsme analyzovali genomovou DNA od 123 nepříbuzných probandů se suspektní progresivní či rekurentní intrahepatální cholestázou (PFIC nebo BRIC). Mutační analýza ATP8B1, ABCB11, a TJP2 byla provedena u 82 nemocných s normální aktivitou GGT. ABCB4 byl sekvenován u 41 nemocných se zvýšenou aktivitou GGT. U 38 (30,8%) probandů se podařilo potvrdit dg PFIC1 (n=1), PFIC2 (n=14), BRIC (n=10), PFIC3 (n=5) a mírných forem deficitu MDR3 (n=8). U 85 (69,2%) nemocných je dg nejasná. Naším cílem je zjistit molekulární příčinu a mechanizmus choroby u většiny či alespoň u některých z těchto 85 pacientů. K jeho dosažení plánujeme provést sekvenování exomu a v odůvodněných případech i sekvenování genomu, analýzu počtu kopií či RNAseq u většiny z těchto 85 pacientů a jejich rodinných příslušníků. Exprese mutovaných proteinů bude studována imunohistologicky. Patogenita nových mutací bude testována na úrovni mRNA a proteinu na transfekovaných buněčných liniích. Očekávané výsledky viz Specifické cíle v sekci Cíle projektu.; Between 2002- 2017 we analyzed gDNA of 123 unrelated index patiens with suspect progressive or recurrent intrahepatic cholestasis (PFIC or BRIC). Mutation analysis of ATP8B1, ABCB11, ABCB4 and TJP2 was run in 82 patiens with low GGT cholestasis, ABCB4 was sequenced in 41 patients with high GGT cholestasis. The diagnosis of PFIC1, PFIC2, BRIC, PFIC3 and mild forms of MDR3 deficiency were confirmed in 1, 14, 10, 5 and 8 patients, respectively. The diagnosis was established in 38 (30.8%) index patients. The diagnosis remains unclear in 85 (69.2%) patients. Our goal is to find molecular basis and mechanism of the disease in most (or at least some) of these 85 patients and in several patients expected to come in 2018-2021. To achieve this, we plan to perform whole exome sequencing and, when appropriate, genome sequencing, copy number analysis or RNAseq, in most of these patients and their family members. Expression of mutated proteins will be detected on immunohistology. Pathogenicity of novel mutations will be tested in transfected cultured cells. For expected results see Aims.
- Keywords
- intrahepatální cholestáza, žluč, sekvenování exomu, intrahepaticcholestasis, bile, whole exome sequencing,
- NML Publication type
- závěrečné zprávy o řešení grantu AZV MZ ČR
Patients with preexisting metabolic disorders such as diabetes are at a higher risk of developing severe coronavirus disease 2019 (COVID-19). Mitochondrion, the very organelle that controls cellular metabolism, holds the key to understanding disease progression at the cellular level. Our current study aimed to understand how cellular metabolism contributes to COVID-19 outcomes. Metacore pathway enrichment analyses on differentially expressed genes (encoded by both mitochondrial and nuclear deoxyribonucleic acid (DNA)) involved in cellular metabolism, regulation of mitochondrial respiration and organization, and apoptosis, was performed on RNA sequencing (RNASeq) data from blood samples collected from healthy controls and patients with mild/moderate or severe COVID-19. Genes from the enriched pathways were analyzed by network analysis to uncover interactions among them and up- or downstream genes within each pathway. Compared to the mild/moderate COVID-19, the upregulation of a myriad of growth factor and cell cycle signaling pathways, with concomitant downregulation of interferon signaling pathways, were observed in the severe group. Matrix metallopeptidase 9 (MMP9) was found in five of the top 10 upregulated pathways, indicating its potential as therapeutic target against COVID-19. In summary, our data demonstrates aberrant activation of endocrine signaling in severe COVID-19, and its implication in immune and metabolic dysfunction.
- MeSH
- COVID-19 * MeSH
- Humans MeSH
- Matrix Metalloproteinase 9 genetics metabolism MeSH
- Intercellular Signaling Peptides and Proteins MeSH
- Mitochondria metabolism MeSH
- Signal Transduction MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
High-Risk neuroblastoma (NB) survival rate is still <50%, despite treatments being more and more aggressive. The biggest hurdle liable to cancer therapy failure is the drug resistance by tumor cells that is likely due to the intra-tumor heterogeneity (ITH). To investigate the link between ITH and therapy resistance in NB, we performed a single cell RNA sequencing (scRNAseq) of etoposide and cisplatin resistant NB and their parental cells. Our analysis showed a clear separation of resistant and parental cells for both conditions by identifying 8 distinct tumor clusters in etoposide-resistant/parental and 7 in cisplatin-resistant/parental cells. We discovered that drug resistance can affect NB cell identities; highlighting the bi-directional ability of adrenergic-to-mesenchymal transition of NB cells. The biological processes driving the identified resistant cell subpopulations revealed genes such as (BARD1, BRCA1, PARP1, HISTH1 axis, members of RPL family), suggesting a potential drug resistance due to the acquisition of DNA repair mechanisms and to the modification of the drug targets. Deconvolution analysis of bulk RNAseq data from 498 tumors with cell subpopulation signatures showed that the transcriptional heterogeneity of our cellular models reflected the ITH of NB tumors and allowed the identification of clusters associated with worse/better survival. Our study demonstrates the distinct cell populations characterized by genes involved in different biological processes can have a role in NB drug treatment failure. These findings evidence the importance of ITH in NB drug resistance studies and the chance that scRNA-seq analysis offers in the identification of genes and pathways liable for drug resistance.
- Publication type
- Journal Article MeSH
Accumulated evidence suggests that the endosymbiotic Trichomonasvirus (TVV) may play a role in the pathogenesis and drug susceptibility of Trichomonas vaginalis. Several reports have shown that extracellular vesicles (EVs) released from TVV-positive (TVV+) trichomonads can modulate the immune response in human vaginal epithelial cells and animal models. These results prompted us to examine whether EVs released from TVV+ isolates contained TVV. We isolated small extracellular vesicles (sEVs) from six T. vaginalis isolates that were either TVV free (ATCC 50143), harbored a single (ATCC 30236, ATCC 30238, T1), two (ATCC PRA-98), or three TVV subspecies (ATCC 50148). The presence of TVV subspecies in the six isolates was observed using reverse transcription-polymerase chain reaction (RT-PCR). Transmission electron microscopy (TEM) confirmed the presence of cup-shaped sEVs with a size range from 30-150 nm. Trichomonas vaginalis tetraspanin (TvTSP1; TVAG_019180), the classical exosome marker, was identified in all the sEV preparations. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that all the sEVs isolated from TVV+ isolates contain viral capsid proteins derived from the same TVV subspecies in that isolate as demonstrated by RT-PCR. To provide more comprehensive information on the TVV subspecies population in other T. vaginalis isolates, we investigated the distribution of TVV subspecies in twenty-four isolates by mining the New-Generation Sequencing (NGS) RNAseq datasets. Our results should be beneficial for future studies investigating the role of TVV on the pathogenicity of T. vaginalis and the possible transmission of virus subspecies among different isolates via sEVs.
- MeSH
- Chromatography, Liquid MeSH
- RNA, Double-Stranded MeSH
- Extracellular Vesicles * genetics MeSH
- RNA Viruses * genetics MeSH
- Tandem Mass Spectrometry MeSH
- Trichomonas vaginalis * genetics MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- MeSH
- Single-Cell Gene Expression Analysis methods instrumentation MeSH
- Survival Analysis MeSH
- Receptors, Chimeric Antigen * immunology therapeutic use MeSH
- Progression-Free Survival MeSH
- Humans MeSH
- B-Cell Maturation Antigen immunology drug effects MeSH
- Multiple Myeloma * therapy MeSH
- Drug-Related Side Effects and Adverse Reactions epidemiology MeSH
- Cytokine Release Syndrome chemically induced epidemiology MeSH
- T-Lymphocytes immunology MeSH
- Treatment Outcome MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Clinical Study MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: Tumors can influence peripheral immune macroenvironment, thereby creating opportunities for non-invasive serum/plasma immunobiomarkers for immunostratification and immunotherapy designing. However, current approaches for immunobiomarkers' detection are largely quantitative, which is unreliable for assessing functional peripheral immunodynamics of patients with cancer. Hence, we aimed to design a functional biomarker modality for capturing peripheral immune signaling in patients with cancer for reliable immunostratification. METHODS: We used a data-driven in silico framework, integrating existing tumor/blood bulk-RNAseq or single-cell (sc)RNAseq datasets of patients with cancer, to inform the design of an innovative serum-screening modality, that is, serum-functional immunodynamic status (sFIS) assay. Next, we pursued proof-of-concept analyses via multiparametric serum profiling of patients with ovarian cancer (OV) with sFIS assay combined with Luminex (cytokines/soluble immune checkpoints), CA125-antigen detection, and whole-blood immune cell counts. Here, sFIS assay's ability to determine survival benefit or malignancy risk was validated in a discovery (n=32) and/or validation (n=699) patient cohorts. Lastly, we used an orthotopic murine metastatic OV model, with anti-OV therapy selection via in silico drug-target screening and murine serum screening via sFIS assay, to assess suitable in vivo immunotherapy options. RESULTS: In silico data-driven framework predicted that peripheral immunodynamics of patients with cancer might be best captured via analyzing myeloid nuclear factor kappa-light-chain enhancer of activated B cells (NFκB) signaling and interferon-stimulated genes' (ISG) responses. This helped in conceptualization of an 'in sitro' (in vitro+in situ) sFIS assay, where human myeloid cells were exposed to patients' serum in vitro, to assess serum-induced (si)-NFκB or interferon (IFN)/ISG responses (as active signaling reporter activity) within them, thereby 'mimicking' patients' in situ immunodynamic status. Multiparametric serum profiling of patients with OV established that sFIS assay can: decode peripheral immunology (by indicating higher enrichment of si-NFκB over si-IFN/ISG responses), estimate survival trends (si-NFκB or si-IFN/ISG responses associating with negative or positive prognosis, respectively), and coestimate malignancy risk (relative to benign/borderline ovarian lesions). Biologically, we documented dominance of pro-tumorigenic, myeloid si-NFκB responseHIGHsi-IFN/ISG responseLOW inflammation in periphery of patients with OV. Finally, in an orthotopic murine metastatic OV model, sFIS assay predicted the higher capacity of chemo-immunotherapy (paclitaxel-carboplatin plus anti-TNF antibody combination) in achieving a pro-immunogenic peripheral milieu (si-IFN/ISG responseHIGHsi-NFκB responseLOW), which aligned with high antitumor efficacy. CONCLUSIONS: We established sFIS assay as a novel biomarker resource for serum screening in patients with OV to evaluate peripheral immunodynamics, patient survival trends and malignancy risk, and to design preclinical chemo-immunotherapy strategies.
- MeSH
- Survival Analysis MeSH
- Immunotherapy methods MeSH
- Humans MeSH
- Mice MeSH
- Ovarian Neoplasms drug therapy genetics mortality MeSH
- NF-kappa B metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Ixodes ricinus is the vector for Borrelia afzelii, the predominant cause of Lyme borreliosis in Europe, whereas Ixodes scapularis is the vector for Borrelia burgdorferi in the USA. Transcription of several I. scapularis genes changes in the presence of B. burgdorferi and contributes to successful infection. To what extend B. afzelii influences gene expression in I. ricinus salivary glands is largely unknown. Therefore, we measured expression of uninfected vs. infected tick salivary gland genes during tick feeding using Massive Analysis of cDNA Ends (MACE) and RNAseq, quantifying 26.179 unique transcripts. While tick feeding was the main differentiator, B. afzelii infection significantly affected expression of hundreds of transcripts, including 465 transcripts after 24 h of tick feeding. Validation of the top-20 B. afzelii-upregulated transcripts at 24 h of tick feeding in ten biological genetic distinct replicates showed that expression varied extensively. Three transcripts could be validated, a basic tail protein, a lipocalin and an ixodegrin, and might be involved in B. afzelii transmission. However, vaccination with recombinant forms of these proteins only marginally altered B. afzelii infection in I. ricinus-challenged mice for one of the proteins. Collectively, our data show that identification of tick salivary genes upregulated in the presence of pathogens could serve to identify potential pathogen-blocking vaccine candidates.
- MeSH
- Arachnid Vectors microbiology MeSH
- Bacterial Vaccines administration & dosage MeSH
- Borrelia burgdorferi Group drug effects MeSH
- Tick Infestations genetics microbiology prevention & control transmission MeSH
- Ixodes drug effects MeSH
- Lyme Disease genetics microbiology prevention & control transmission MeSH
- Mice MeSH
- Arthropod Proteins genetics MeSH
- Salivary Glands microbiology MeSH
- Transcriptome * MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH