Interaction of MOPS buffer with glass-ceramic scaffold: Effect of (PO4 )3- ions in SBF on kinetics and morphology of formatted hydroxyapatite
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
31840940
PubMed Central
PMC7217194
DOI
10.1002/jbm.b.34530
Knihovny.cz E-resources
- Keywords
- MOPS buffer, bioglass®, glass-ceramics scaffold, in vitro test, simulated body fluid,
- MeSH
- X-Ray Diffraction MeSH
- Phosphates chemistry MeSH
- Durapatite chemistry MeSH
- Ions chemistry MeSH
- Ceramics chemistry MeSH
- Kinetics MeSH
- Hydrogen-Ion Concentration MeSH
- Buffers MeSH
- Body Fluids chemistry metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Bioglass MeSH Browser
- Phosphates MeSH
- Glass ceramics MeSH Browser
- Durapatite MeSH
- Ions MeSH
- Buffers MeSH
The international standard ISO 23317:2014 for the in vitro testing of inorganic biomaterials in simulated body fluid (SBF) uses TRIS buffer to maintain neutral pH. In our previous papers, we investigated the interaction of a glass-ceramic scaffold with TRIS and HEPES buffers. Both of them speeded up glass-ceramic dissolution and hydroxyapatite (HAp) precipitation, thereby demonstrating their unsuitability for the in vitro testing of highly reactive biomaterials. In this article, we tested MOPS buffer (3-[N-morpholino] propanesulfonic acid), another amino acid from the group of "Goods buffers". A highly reactive glass-ceramic scaffold (derived from Bioglass®) was exposed to SBF under static-dynamic conditions for 13/15 days. The kinetics and morphology of the newly precipitated HAp were studied using two different concentrations of (PO4 )3- ions in SBF. The pH value and the SiIV , Ca2+ , and (PO4 )3- concentrations in the SBF leachate samples were measured every day (AAS, spectrophotometry). The glass-ceramic scaffold was monitored by SEM/EDS, XRD, WD-XRF, and BET before and after 1, 3, 7, 11, and 13/15 days of exposure. As in the case of TRIS and HEPES, the preferential dissolution of the glass-ceramic crystalline phase (Combeite) was observed, but less intensively. The lower concentration of (PO4 )3- ions slowed down the kinetics of HAp precipitation, thereby causing the disintegration of the scaffold structure. This phenomenon shows that the HAp phase was predominately generated by the presence of (PO4 )3- ions in the SBF, not in the glass-ceramic material. Irrespective of this, MOPS buffer is not suitable for the maintenance of pH in SBF.
See more in PubMed
Altura, B. M. , Carella, A. , & Altura, B. T. (1980). Adverse effects of TRIS, HEPES ad MOPS buffers on contractile responses of arterial and venous smooth muscle induced by prostaglandins. Prostaglandins and Medicine, 5, 123–130. 10.1016/0161-4630(80)90099-3 PubMed DOI
Bastos, I. N. , Platt, G. M. , Andrade, M. C. , & Soares, G. D. (2008). Theoretical study of Tris and Bistris effects on simulated body fluids. Journal of Molecular Liquids, 139, 121–130. 10.1016/j.molliq.2007.12.003 DOI
Chen, Q. Z. , Thompson, I. D. , & Boccaccini, A. R. (2006). 45S5 bioglass®‐derived glass‐ceramic scaffolds for bone tissue engineering. Biomaterials, 27, 2414–2425. 10.1016/j.biomaterials.2005.11.025 PubMed DOI
de Carvalho Dias, K. , Aboud Barbugli, P. , & Vergani, C. E. (2016). Influence of different buffers (HEPES/MOPS) on keratinocyte cell viability and microbial growth. Journal of Microbiological Methods, 125, 40–42. 10.1016/j.mimet.2016.03.018 PubMed DOI
Good, N. E. , Winget, G. D. , Winter, W. , Connolly, T. N. , Izawa, S. , & Singh, R. M. M. (1966). Hydrogen ion buffers for biological research. Biochemistry, 5(2), 467–477. 10.1021/bi00866a011 PubMed DOI
Gupta, B. S. , Chen, B.‐R. , & Lee, M.‐L. (2015). Solvation consequences of polymer PVP with biological buffers MES, MOPS, and MOPSO in aqueous solutions. The Journal of Chemical Thermodynamics, 9, 62–72. 10.1016/j.jct.2015.07.022 DOI
Horkavcová, D. , Zítková, K. , Rohanová, D. , Helebrant, A. , & Cílová, Z. (2010). The resorption of ß‐TCP and HA materials under conditions similar to those in living organisms. Ceramics‐Silikáty, 54(4), 398–404.
International Organization for Standardization . (2014). International standard: ISO 23317:2014(E) Implants for surgery—In vitro evaluation for apatite‐forming ability of implant materials. Geneva: ISO.
Kim, H. M. , Miyaji, F. , Kokubo, T. , Ohtsuki, C. , & Nakamura, T. (1995). Bioactivity of Na2O‐CaO‐SiO2 glasses. Journal of the American Ceramic Society, 78(9), 2405–2411. 10.1111/j.1151-2916.1995.tb08677.x DOI
Moreno, E. C. , Zahradnik, R. T. , Glazmann, A. , & Hwu, R. (1977). Precipitation of hydroxyapatite from dilute solutions upon seeding. Calcified Tissue Research, 24(1), 47–57. 10.1007/BF02223296 PubMed DOI
Pietrzyňska, M. , & Voelkel, A. (2017). Stability of simulated body fluids such as blood plasma, artificial urine and artificial saliva. Microchemical Journal, 134, 197–201. 10.1016/j.microc.2017.06.004 DOI
Rohanová, D. , Boccaccini, A. R. , Horkavcová, D. , Bozděchová, P. , Bezdička, P. , & Častorálová, M. (2014). Is non‐buffered DMEM solution a suitable medium for in vitro bioactivity tests? Journal of Materials Chemistry B, 2, 5068–5076. 10.1039/C4TB00187G PubMed DOI
Rohanová, D. , Boccaccini, A. R. , Yunos, D. M. , Horkavcová, D. , Březovská, I. , & Helebrant, A. (2011). TRIS buffer in simulated body fluid distorts the assessment of glass‐ceramic scaffold bioactivity. Acta Biomaterialia, 7, 2623–2630. 10.1016/j.actbio.2011.02.028 PubMed DOI
Rohanová, D. , Horkavcová, D. , Paidere, L. , Boccaccini, A. R. , Bozděchová, P. , & Bezdička, P. (2018). Interaction of HEPES buffer with glass‐ceramic scaffold: Can HEPES replace TRIS in SBF? Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106B, 143–152. 10.1002/jbm.b.33818 PubMed DOI
Salis, A. , & Monduzzi, M. (2016). Not only pH. Specific buffer effects in biological systems. Current Opinion in Colloid & Interface Science, 23, 1–9. 10.1016/j.cocis.2016.04.004 DOI
Taha, M. , & Lee, M. J. (2010). Volumetric properties of MES, MOPS, MOPSO, and MOBS in water and in aqueous electrolyte solutions. Termoch Acta, 505, 86–97. 10.1016/j.tca.2010.04.004 DOI
van Kemenade, M. J. J. M. , & de Bruyn, P. L. (1987). A kinetic study of precipitation from supersaturated calcium phosphate solutions. Journal of Colloid and Interface Science, 118(2), 564–585. 10.1016/0021-9797(87)90490-5 DOI