• This record comes from PubMed

Concentration of trace metals in winter wheat and spring barley as a result of digestate, cattle slurry, and mineral fertilizer application

. 2020 Feb ; 27 (5) : 4769-4785. [epub] 20191216

Language English Country Germany Media print-electronic

Document type Journal Article

Grant support
MZe-RO0418 Ministry of Agriculture of the Czech Republic
005/RID/2018/19 Ministry of Science and Higher Education of Poland

Links

PubMed 31845241
DOI 10.1007/s11356-019-07304-2
PII: 10.1007/s11356-019-07304-2
Knihovny.cz E-resources

Concentration of trace metals (TMs) is one of the most crucial factors determining the quality of cereal grains. The aim of this study was to evaluate the effect of digestate, manure, and NPK fertilization on TM concentration in grains and straw of two cereal crops-winter wheat (WW) and spring barley (SB)-and TM transfer from soil to plants. The experiment was carried out between 2012 and 2016. Every year, the same treatment was used on each plot: control (without fertilization), digestate, digestate + straw, cattle slurry, and mineral NPK fertilization. In general, fertilization increased the concentration of TMs that belong to the micronutrient group (Zn, Cu, Fe), particularly after application of digestate and cattle slurry. At the same time, fertilization, regardless of the fertilizer type, led to an increase in Cd concentration in the grain of WW in comparison with the control. Despite the increase in Cd and micronutrient content as a result of fertilization, the concentration of elements remained below the applicable standards. Among TMs, only Pb content exceeded the European Union limits. The increased concentration of Pb was, however, an effect of other factors, rather than fertilization. The results clearly indicated that the biogas digestate from anaerobic codigestion of cattle slurry and agricultural residue could be utilized as fertilizer in agricultural applications without a risk of contaminating the food chain with TMs.

See more in PubMed

Environ Geochem Health. 2015 Dec;37(6):1041-61 PubMed

J Environ Qual. 2008 May 02;37(3):798-807 PubMed

Sci Total Environ. 2008 Nov 1;405(1-3):54-61 PubMed

Trends Plant Sci. 2005 Oct;10(10):491-502 PubMed

Environ Sci Pollut Res Int. 2016 Sep;23(17):16955-64 PubMed

Water Sci Technol. 2008;57(4):553-8 PubMed

Biol Trace Elem Res. 2019 Apr;188(2):514-520 PubMed

J Exp Bot. 2002 Jan;53(366):1-11 PubMed

J Trace Elem Med Biol. 2016 May;35:107-15 PubMed

Curr Opin Plant Biol. 2009 Jun;12(3):259-66 PubMed

Environ Sci Pollut Res Int. 2017 Jan;24(1):947-955 PubMed

BMC Plant Biol. 2013 Jul 16;13:103 PubMed

Chemosphere. 2018 Nov;210:1029-1034 PubMed

J Hazard Mater. 2011 Oct 15;193:264-71 PubMed

Ecotoxicol Environ Saf. 2016 Apr;126:193-201 PubMed

Waste Manag. 2011 Dec;31(12):2577-83 PubMed

Waste Manag. 2014 May;34(5):867-74 PubMed

Sci Total Environ. 2009 Feb 15;407(5):1551-61 PubMed

Environ Sci Pollut Res Int. 2015 Sep;22(18):14358-66 PubMed

Water Sci Technol. 2005;52(1-2):203-8 PubMed

Chemosphere. 2010 Oct;81(5):577-83 PubMed

J Hazard Mater. 2014 Feb 15;266:141-66 PubMed

Chemosphere. 2008 Jan;70(7):1264-72 PubMed

Ann Bot. 2010 Jun;105(7):1073-80 PubMed

Ecotoxicol Environ Saf. 2015 Feb;112:247-70 PubMed

Appl Microbiol Biotechnol. 2010 Jan;85(4):849-60 PubMed

Sci Total Environ. 2003 Jul 20;311(1-3):205-19 PubMed

Philos Trans R Soc Lond B Biol Sci. 2010 Sep 27;365(1554):2793-807 PubMed

Environ Sci Pollut Res Int. 2017 Jun;24(18):15209-15225 PubMed

Sci Total Environ. 2017 Dec 1;599-600:1885-1894 PubMed

Environ Sci Pollut Res Int. 2017 Apr;24(10):8916-8923 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...