Monocytes undergo multi-step differentiation in mice during oral infection by Toxoplasma gondii
Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31872076
PubMed Central
PMC6920430
DOI
10.1038/s42003-019-0718-6
PII: 718
Knihovny.cz E-zdroje
- Klíčová slova
- Epigenetics in immune cells, Infection, Interleukins, Monocytes and macrophages,
- MeSH
- analýza jednotlivých buněk MeSH
- buněčná diferenciace imunologie MeSH
- epigeneze genetická MeSH
- makrofágy imunologie metabolismus MeSH
- monocyty cytologie imunologie metabolismus MeSH
- myši MeSH
- přeprogramování buněk genetika MeSH
- stanovení celkové genové exprese MeSH
- Toxoplasma imunologie MeSH
- toxoplazmóza genetika imunologie metabolismus parazitologie MeSH
- výpočetní biologie metody MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Monocytes play a major role in the defense against pathogens. They are rapidly mobilized to inflamed sites where they exert both proinflammatory and regulatory effector functions. It is still poorly understood how this dynamic and exceptionally plastic system is controlled at the molecular level. Herein, we evaluated the differentiation process that occurs in Ly6Chi monocytes during oral infection by Toxoplasma gondii. Flow cytometry and single-cell analysis revealed distinct activation status and gene expression profiles in the bone marrow, the spleen and the lamina propria of infected mice. We provide further evidence that acquisition of effector functions, such as the capacity to produce interleukin-27, is accompanied by distinct waves of epigenetic programming, highlighting a role for STAT1/IRF1 in the bone marrow and AP-1/NF-κB in the periphery. This work broadens our understanding of the molecular events that occur in vivo during monocyte differentiation in response to inflammatory cues.
Institute of Biotechnology Czech Academy of Science 252 50 Vestec u prahy Czech Republic
Université Catholique de Louvain Institut de Duve Brussels Belgium
Université Libre de Bruxelles Laboratoire d'Immunobiologie Gosselies Belgium
Université Libre de Bruxelles Laboratory of Cancer Epigenetics Brussels Belgium
Zobrazit více v PubMed
Guilliams M, et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol. 2014;14:571–578. doi: 10.1038/nri3712. PubMed DOI PMC
Guilliams M, Mildner A, Yona S. Developmental and functional heterogeneity of monocytes. Immunity. 2018;49:595–613. doi: 10.1016/j.immuni.2018.10.005. PubMed DOI
Glass CK, Natoli G. Molecular control of activation and priming in macrophages. Nat. Immunol. 2016;17:26–33. doi: 10.1038/ni.3306. PubMed DOI PMC
Amit I, Winter DR, Jung S. The role of the local environment and epigenetics in shaping macrophage identity and their effect on tissue homeostasis. Nat. Immunol. 2016;17:18–25. doi: 10.1038/ni.3325. PubMed DOI
Ostuni R, et al. Latent enhancers activated by stimulation in differentiated cells. Cell. 2013;152:157–171. doi: 10.1016/j.cell.2012.12.018. PubMed DOI
Shalek AK, et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature. 2013;498:236–240. doi: 10.1038/nature12172. PubMed DOI PMC
Hand TW, et al. Acute gastrointestinal infection induces long-lived microbiota-specific T cell responses. Science. 2012;337:1553–1556. doi: 10.1126/science.1220961. PubMed DOI PMC
Oldenhove G, et al. Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity. 2009;31:772–786. doi: 10.1016/j.immuni.2009.10.001. PubMed DOI PMC
Dunay IR, et al. Gr1+inflammatory monocytes are required for mucosal resistance to the pathogen Toxoplasma gondii. Immunity. 2008;29:306–317. doi: 10.1016/j.immuni.2008.05.019. PubMed DOI PMC
Grainger JR, et al. Inflammatory monocytes regulate pathologic responses to commensals during acute gastrointestinal infection. Nat. Med. 2013;19:713–721. doi: 10.1038/nm.3189. PubMed DOI PMC
Tamoutounour S, et al. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity. 2013;39:925–938. doi: 10.1016/j.immuni.2013.10.004. PubMed DOI
Bain CC, et al. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol. 2013;6:498–510. doi: 10.1038/mi.2012.89. PubMed DOI PMC
Langlet C, et al. CD64 expression distinguishes monocyte-derived and conventional dendritic cells and reveals their distinct role during intramuscular immunization. J. Immunol. 2012;188:1751–1760. doi: 10.4049/jimmunol.1102744. PubMed DOI
Askenase MH, et al. Bone-marrow-resident NK cells prime monocytes for regulatory function during Infection. Immunity. 2015;42:1130–1142. doi: 10.1016/j.immuni.2015.05.011. PubMed DOI PMC
Tay S, et al. Single-cell NF-kappaB dynamics reveal digital activation and analogue information processing. Nature. 2010;466:267–271. doi: 10.1038/nature09145. PubMed DOI PMC
Fanucchi S, Shibayama Y, Burd S, Weinberg MS, Mhlanga MM. XChromosomal contact permits transcription between coregulated genes. Cell. 2013;155:606–620. doi: 10.1016/j.cell.2013.09.051. PubMed DOI
Mashayekhi M, et al. CD8α(+) dendritic cells are the critical source of interleukin-12 that controls acute infection by Toxoplasma gondii tachyzoites. Immunity. 2011;35:249–259. doi: 10.1016/j.immuni.2011.08.008. PubMed DOI PMC
Hall AOH, et al. The cytokines interleukin 27 and interferon-γ promote distinct Treg cell populations required to limit infection-induced. Pathology. 2013;37:511–523. PubMed PMC
Goriely S, Neurath MF, Goldman M. How microorganisms tip the balance between interleukin-12 family members. Nat. Rev. Immunol. 2008;8:81–86. doi: 10.1038/nri2225. PubMed DOI
Lee H-M, et al. IFNγ signaling endows DCs with the capacity to control type I inflammation during parasitic infection through promoting T-bet+ regulatory T cells. PLOS Pathog. 2015;11:e1004635. doi: 10.1371/journal.ppat.1004635. PubMed DOI PMC
Garber M, et al. A high-throughput chromatin immunoprecipitation approach reveals principles of dynamic gene regulation in mammals. Mol. Cell. 2012;47:810–822. doi: 10.1016/j.molcel.2012.07.030. PubMed DOI PMC
McLean CY, et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 2010;28:495–501. doi: 10.1038/nbt.1630. PubMed DOI PMC
Langlais D, Barreiro LB, Gros P. The macrophage IRF8 / IRF1 regulome is required for protection against infections and is associated with chronic inflammation. J. Exp. Med. 2016;213:585–603. doi: 10.1084/jem.20151764. PubMed DOI PMC
Molle C, Goldman M, Goriely S, Alerts E. Critical role of the IFN-stimulated gene factor 3 complex in TLR-mediated IL-27p28 gene expression revealing a two-step activation process. J. Immunol. 2010;184:1784–1792. doi: 10.4049/jimmunol.0902005. PubMed DOI
Yona S, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity. 2013;38:79–91. doi: 10.1016/j.immuni.2012.12.001. PubMed DOI PMC
Yáñez A, et al. Granulocyte-monocyte progenitors and monocyte-dendritic cell progenitors independently produce functionally distinct monocytes. Immunity. 2017;47:890–902.e4. doi: 10.1016/j.immuni.2017.10.021. PubMed DOI PMC
Qiao Y, et al. Synergistic activation of inflammatory cytokine genes by interferon-γ-induced chromatin remodeling and toll-like receptor signaling. Immunity. 2013;39:454–469. doi: 10.1016/j.immuni.2013.08.009. PubMed DOI PMC
Vierbuchen T, et al. AP-1 transcription factors and the BAF complex mediate signal-dependent enhancer selection. Mol. Cell. 2017;68:1134–1146.e6. doi: 10.1016/j.molcel.2017.11.026. PubMed DOI PMC
Park SH, et al. Type I interferons and the cytokine TNF cooperatively reprogram the macrophage epigenome to promote inflammatory activation. Nat. Immunol. 2017;18:1104–1116. doi: 10.1038/ni.3818. PubMed DOI PMC
Serbina NV, Pamer EG. Coordinating innate immune cells to optimize microbial killing. Immunity. 2008;29:672–674. doi: 10.1016/j.immuni.2008.10.003. PubMed DOI PMC
Narni-Mancinelli Emilie, Soudja Saidi M'Homa, Crozat Karine, Dalod Marc, Gounon Pierre, Geissmann Frédéric, Lauvau Grégoire. Inflammatory Monocytes and Neutrophils Are Licensed to Kill during Memory Responses In Vivo. PLoS Pathogens. 2011;7(12):e1002457. doi: 10.1371/journal.ppat.1002457. PubMed DOI PMC
Glennie ND, Volk SW, Scott P. Skin-resident CD4+ T cells protect against Leishmania major by recruiting and activating inflammatory monocytes. PLOS Pathog. 2017;13:e1006349. doi: 10.1371/journal.ppat.1006349. PubMed DOI PMC
Nakanishi Y, Sato T, Takahashi K, Ohteki T. IFN-γ-dependent epigenetic regulation instructs colitogenic monocyte/macrophage lineage differentiation in vivo. Mucosal Immunol. 2018;11:871–880. doi: 10.1038/mi.2017.104. PubMed DOI
Terrazas, C. et al. Ly6C hi inflammatory monocytes promote susceptibility to Leishmania donovani infection. Sci. Rep. 7, 14693 (2017). PubMed PMC
Kilgore AM, et al. IL-27p28 production by XCR1 + dendritic cells and monocytes effectively predicts adjuvant-elicited CD8 + T cell responses HHS Public Access. Immunohorizons. 2018;2:1–11. doi: 10.4049/immunohorizons.1700054. PubMed DOI PMC
Goriely S, et al. Interferon regulatory factor 3 is involved in Toll-like receptor 4 (TLR4)- and TLR3-induced IL-12p35 gene activation. Blood. 2006;107:1078–1084. doi: 10.1182/blood-2005-06-2416. PubMed DOI
Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.1–21.29.9 (2015). PubMed PMC
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25. doi: 10.1186/gb-2009-10-3-r25. PubMed DOI PMC
Consortium TEP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74. doi: 10.1038/nature11247. PubMed DOI PMC
Zhang Y, et al. Model-based analysis of ChIP-Seq (MACS) Genome Biol. 2008;9:R137. doi: 10.1186/gb-2008-9-9-r137. PubMed DOI PMC
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. doi: 10.1093/bioinformatics/btq033. PubMed DOI PMC
Ramírez F, Dündar F, Diehl S, Grüning BA, Manke T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 2014;42:W187–W191. doi: 10.1093/nar/gku365. PubMed DOI PMC
Bailey TL, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37:W202–W208. doi: 10.1093/nar/gkp335. PubMed DOI PMC
Buske FA, Bodén M, Bauer DC, Bailey TL. Assigning roles to DNA regulatory motifs using comparative genomics. Bioinformatics. 2010;26:860–866. doi: 10.1093/bioinformatics/btq049. PubMed DOI PMC
Afgan E, et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018;46:W537–W544. doi: 10.1093/nar/gky379. PubMed DOI PMC