Low vector competence in sylvatic mosquitoes limits Zika virus to initiate an enzootic cycle in South America
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
U01 AI115595
NIAID NIH HHS - United States
PubMed
31882976
PubMed Central
PMC6934573
DOI
10.1038/s41598-019-56669-4
PII: 10.1038/s41598-019-56669-4
Knihovny.cz E-zdroje
- MeSH
- infekce přenášené vektorem MeSH
- infekce virem zika diagnóza epidemiologie přenos virologie MeSH
- komáří přenašeči virologie MeSH
- lidé MeSH
- ochrana veřejného zdraví MeSH
- virová nálož MeSH
- virus zika * klasifikace genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Jižní Amerika epidemiologie MeSH
Zika virus (ZIKV) has spread in the Americas since 2015 and the potential establishment of a sylvatic transmission cycle in the continent has been hypothesized. We evaluated vector competence of five sylvatic Neotropical mosquito species to two ZIKV isolates. Distinct batches of Haemagogus leucoceleanus, Sabethes albiprivus, Sabethes identicus, Aedes terrens and Aedes scapularis females were respectively orally challenged and inoculated intrathoracically with ZIKV. Orally challenged mosquitoes were refractory or exhibited low infection rates. Viral dissemination was detected only in Hg. leucocelaenus, but with very low rates. Virus was not detected in saliva of any mosquito orally challenged with ZIKV, regardless of viral isolate and incubation time. When intrathoracically injected, ZIKV disseminated in high rates in Hg. leucocelaenus, Sa. identicus and Sa. albpiprivus, but low transmission was detected in these species; very low dissemination and no transmission was detected in Ae. terrens and Ae. scapularis. Together these results suggest that genetically determined tissue barriers, especially in the midgut, play a vital role in inhibiting ZIKV for transmission in the tested sylvatic mosquito species. Thus, an independent enzootic transmission cycle for ZIKV in South America is very unlikely.
Laboratório de Biologia Molecular de Flavivírus Instituto Oswaldo Cruz FIOCRUZ Rio de Janeiro Brazil
Zobrazit více v PubMed
Dick GW, Kitchen SF, Haddow AJ. Zika virus. I. Isolations and serological specificity. Trans. R. Soc. Trop. Med. Hyg. 1952;46:509–20. doi: 10.1016/0035-9203(52)90042-4. PubMed DOI
Weaver SC, et al. Zika virus: History, emergence, biology, and prospects for control. Antivir. Res. 2016;130:69–80. doi: 10.1016/j.antiviral.2016.03.010. PubMed DOI PMC
Gubler DJ, Vasilakis N, Musso D. History and emergence of zika virus. J. Infect. Dis. 2017;216:S860–S867. doi: 10.1093/infdis/jix451. PubMed DOI PMC
Duffy MR, et al. Zika Virus Outbreak on Yap Island, Federated States of Micronesia. N. Engl. J. Med. 2009;360:2536–2543. doi: 10.1056/NEJMoa0805715. PubMed DOI
Foy BD, et al. Probable Non-Vector-borne Transmission of Zika Virus, Colorado, USA. Emerg. Infect. Dis. 2011;17:880–882. doi: 10.3201/eid1705.101939. PubMed DOI PMC
Campos GS, Bandeira AC, Sardi SI. Zika Virus Outbreak, Bahia, Brazil. Emerg. Infect. Dis. 2015;21:1885–1886. doi: 10.3201/eid2110.150847. PubMed DOI PMC
Zanluca C, et al. First report of autochthonous transmission of Zika virus in Brazil. Mem. Inst. Oswaldo Cruz. 2015;110:569–572. doi: 10.1590/0074-02760150192. PubMed DOI PMC
Centers for Disease Control and Prevention. All countries & territories with active Zika virus transmission. CDC (2016).
Pan American Health Organization. Epidemiological Alert Neurological syndrome, congenital malformations, and Zika virus infection. Implications for public health in the Americas. PAHO (2015).
Calvet G, et al. Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study. Lancet Infect. Dis. 2016;16:653–660. doi: 10.1016/S1473-3099(16)00095-5. PubMed DOI
Oliveira Melo AS, et al. Zika virus intrauterine infection causes fetal brain abnormality and microcephaly: Tip of the iceberg? Ultrasound Obstet. Gynecol. 2016;47:6–7. doi: 10.1002/uog.15831. PubMed DOI
Haddow Andrew D., Schuh Amy J., Yasuda Chadwick Y., Kasper Matthew R., Heang Vireak, Huy Rekol, Guzman Hilda, Tesh Robert B., Weaver Scott C. Genetic Characterization of Zika Virus Strains: Geographic Expansion of the Asian Lineage. PLoS Neglected Tropical Diseases. 2012;6(2):e1477. doi: 10.1371/journal.pntd.0001477. PubMed DOI PMC
Diallo D, et al. Zika virus emergence in mosquitoes in south-eastern Senegal, 2011. PLoS one. 2014;9:e109442. doi: 10.1371/journal.pone.0109442. PubMed DOI PMC
Bryant JE, Holmes EC, Barrett AD. Out of Africa: A Molecular Perspective on the Introduction of Yellow Fever Virus into the Americas. PLoS Pathog. 2007;3:e75. doi: 10.1371/journal.ppat.0030075. PubMed DOI PMC
Obara MT, et al. Infecção natural de Haemagogus janthinomys e Haemagogus leucocelaenus pelo vírus da febre amarela no Distrito Federal, Brasil, 2007–2008. Epidemiol. Serv. Saúde. 2012;21:457–463. doi: 10.5123/S1679-49742012000300011. DOI
Abreu FVS, et al. Haemagogus leucocelaenus and Haemagogus janthinomys are the primary vectors in the major yellow fever outbreak in Brazil, 2016–2018. Emerg. Microbes Infect. 2019;8:218–231. doi: 10.1080/22221751.2019.1568180. PubMed DOI PMC
Couto-Lima D, et al. Potential risk of re-emergence of urban transmission of Yellow Fever virus in Brazil facilitated by competent Aedes populations. Sci. Rep. 2017;7:4848. doi: 10.1038/s41598-017-05186-3. PubMed DOI PMC
Weaver SC, Reisen WK. Present and Future Arboviral Threaths. Antivir. Res. 2010;85:328–345. doi: 10.1016/j.antiviral.2009.10.008. PubMed DOI PMC
Gerber E. Manual for mosquito rearing and experimental techniques Am. Mosq. Control. Assoc. 1970;5:109.
Lourenço-de-Oliveira R, Failloux AB. High risk for chikungunya virus to initiate an enzootic sylvatic cycle in the tropical Americas. PLoS Negl. Trop. Dis. 2017;11:e0005698. doi: 10.1371/journal.pntd.0005698. PubMed DOI PMC
Bonaldo MC, et al. Isolation of infective Zika virus from urine and saliva of patients in Brazil. PLoS Negl. Trop. Dis. 2016;10:e0004816. doi: 10.1371/journal.pntd.0004816. PubMed DOI PMC
Vazeille M, Mousson L, Martin E, Failloux AB. Orally Co-Infected Aedes albopictus from La Reunion Island, Indian Ocean, Can Deliver Both Dengue and Chikungunya Infectious Viral Particles in Their Saliva. PLoS Negl. Trop. Dis. 2010;4:e706. doi: 10.1371/journal.pntd.0000706. PubMed DOI PMC
Fernandes RS, et al. Culex quinquefasciatus from Rio de Janeiro Is Not Competent to Transmit the Local Zika Virus. PLoS Negl. Trop. Dis. 2016;10:e0004993. doi: 10.1371/journal.pntd.0004993. PubMed DOI PMC
Gutiérrez-Bugallo G, et al. Vector-borne transmission and evolution of Zika virus. Nat. Ecol. Evol. 2019;3:561–569. doi: 10.1038/s41559-019-0836-z. PubMed DOI PMC
Althouse BM, et al. Potential for Zika Virus to Establish a Sylvatic Transmission Cycle in the Americas. PLoS Negl. Trop. Dis. 2016;10:e0005055. doi: 10.1371/journal.pntd.0005055. PubMed DOI PMC
Ragan IK, Blizzard EL, Gordy P, Bowen RA. Investigating the Potential Role of North American Animals as Hosts for Zika Virus. Vector-Borne Zoonotic Dis. 2017;17:161–164. doi: 10.1089/vbz.2016.2099. PubMed DOI
Vanchiere JA, et al. Experimental Zika Virus Infection of Neotropical Primates. Am. J. Trop. Med. Hyg. 2018;98:173–177. doi: 10.4269/ajtmh.17-0322. PubMed DOI PMC
Terzian ACB, et al. Long-Term Viruria in Zika Virus-Infected Pregnant Women, Brazil, 2016. Emerg. Infect. Dis. 2017;23:1891–1893. doi: 10.3201/eid2311.170078. PubMed DOI PMC
Favoretto, S. et al. First detection of Zika virus in neotropical primates in Brazil: a possible new reservoir. bio. Rxiv. 049395, 10.1101/049395 (2016).
Karna AK, et al. Colonized Sabethes cyaneus, a Sylvatic New World Mosquito Species, Shows a Low Vector Competence for Zika Virus Relative to Aedes aegypti. Viruses. 2018;10:e434. doi: 10.3390/v10080434. PubMed DOI PMC
Fernandes RS, et al. Culex quinquefasciatus from areas with the highest incidence of microcephaly associated with Zika virus infections in the Northeast Region of Brazil are refractory to the virus. Mem. Inst. Oswaldo Cruz. 2017;112:577–579. doi: 10.1590/0074-02760170145. PubMed DOI PMC
Hardy JL, Houk EJ, Kramer LD, Reeves WC. Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Annu. Rev. Entomol. 1983;28:229–262. doi: 10.1146/annurev.en.28.010183.001305. PubMed DOI
Franz AWE, Kantor AM, Passarelli AL, Clem RJ. Tissue barriers to arbovirus infection in mosquitoes. Viruses. 2015;7:3741–3767. doi: 10.3390/v7072795. PubMed DOI PMC
Espinal MA, et al. Emerging and Reemerging Aedes-Transmitted Arbovirus Infections in the Region of the Americas: Implications for Health Policy. Am. J. Public. Health. 2019;109:387–392. doi: 10.2105/AJPH.2018.304849. PubMed DOI PMC
Amraoui F, et al. Potential of Aedes albopictus to cause the emergence of arboviruses in Morocco. PLoS Negl. Trop. Dis. 2019;14:e0006997. doi: 10.1371/journal.pntd.0006997. PubMed DOI PMC