The Structural and Magnetic Properties of FeII and CoII Complexes with 2-(furan-2-yl)-5-pyridin-2-yl-1,3,4-oxadiazole
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
17-08992S
Grant Agency of the Czech Republic
PubMed
31936620
PubMed Central
PMC7024161
DOI
10.3390/molecules25020277
PII: molecules25020277
Knihovny.cz E-resources
- Keywords
- 1,3,4-oxadiazole, second coordination sphere, single-molecule magnet,
- MeSH
- Anisotropy MeSH
- Electron Spin Resonance Spectroscopy MeSH
- Furans chemistry MeSH
- Cobalt chemistry MeSH
- Coordination Complexes chemistry MeSH
- Crystallography, X-Ray MeSH
- Magnetic Resonance Spectroscopy MeSH
- Models, Molecular MeSH
- Oxadiazoles chemistry MeSH
- Spectroscopy, Fourier Transform Infrared MeSH
- Spectroscopy, Mossbauer MeSH
- Ferrous Compounds chemistry MeSH
- Iron chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- 1,3,4-oxadiazole MeSH Browser
- furan MeSH Browser
- Furans MeSH
- Cobalt MeSH
- Coordination Complexes MeSH
- Oxadiazoles MeSH
- Ferrous Compounds MeSH
- Iron MeSH
Two novel coordination compounds containing heterocyclic bidentate N,N-donor ligand 2-(furan-2-yl)-5-(pyridin-2-yl)-1,3,4-oxadiazole (fpo) were synthesized. A general formula for compounds originating from perchlorates of iron, cobalt, and fpo can be written as: [M(fpo)2(H2O)2](ClO4)2 (M = Fe(II) for (1) Co(II) for (2)). The characterization of compounds was performed by general physico-chemical methods-elemental analysis (EA), Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR) in case of organics, and single crystal X-ray diffraction (sXRD). Moreover, magneto-chemical properties were studied employing measurements in static field (DC) for 1 and X-band EPR (Electron paramagnetic resonance), direct current (DC), and alternating current (AC) magnetic measurements in case of 2. The analysis of DC magnetic properties revealed a high spin arrangement in 1, significant rhombicity for both complexes, and large magnetic anisotropy in 2 (D = -21.2 cm-1). Moreover, 2 showed field-induced slow relaxation of the magnetization (Ueff = 65.3 K). EPR spectroscopy and ab initio calculations (CASSCF/NEVPT2) confirmed the presence of easy axis anisotropy and the importance of the second coordination sphere.
See more in PubMed
Bartolomé J., Luis F., Fernández J.F. Molecular Magnets: Physics and Applications. Springer Verlag; Berlin, Germany: 2016.
Ardavan A., Rival O., Morton J.J.L., Blundell S.J., Tyryshkin A.M., Timco G.A., Winpenny R.E.P. Will spin-relaxation times in molecular magnets permit quantum information processing? Phys. Rev. Lett. 2007;98:057201. doi: 10.1103/PhysRevLett.98.057201. PubMed DOI
Kahn O. Spin-transition polymers: From molecular materials toward memory devices. Science. 1998;279:44–48. doi: 10.1126/science.279.5347.44. DOI
Bartual-Murgui C., Akou A., Thibault C., Molnár G., Vieu C., Salmon L., Bousseksou A. Spin-crossover metal–organic frameworks: Promising materials for designing gas sensors. J. Mater. Chem. C. 2015;3:1277–1285. doi: 10.1039/C4TC02441A. DOI
Linares J., Codjovi E., Garcia Y. Pressure and temperature spin crossover sensors with optical detection. Sensors. 2012;12:4479–4492. doi: 10.3390/s120404479. PubMed DOI PMC
Tripathi S., Dey A., Shanmugam M., Narayanan R.S., Chandrasekhar V. Cobalt(II) Complexes as Single-Ion Magnets. In: Chandrasekhar V., Pointillart F., editors. Organometallic Magnets. Topics in Organometallic Chemistry. Volume 64. Springer; Cham, Germany: 2018. pp. 35–75.
Halcrow M.A. Spin-Crossover Materials: Properties and Applications. Wiley; Chichester, UK: 2013.
Yao X.-N., Du J.-Z., Zhang Y.-Q., Leng X.-B., Yang M.-W., Jiang S.-D., Wang Z.-X., Ouyang Z.-W., Deng L., Wang B.-W., et al. Two-coordinate Co(II) imido complexes as outstanding single-molecule magnets. J. Am. Chem. Soc. 2016;139:373–380. doi: 10.1021/jacs.6b11043. PubMed DOI
Böhme M., Ziegenbalg S., Aliabadi A., Schnegg A., Görls H., Plass W. Magnetic relaxation in cobalt(ii)-based single-ion magnets influenced by distortion of the pseudotetrahedral [N2O2] coordination environment. Dalton Trans. 2018;47:10861–10873. doi: 10.1039/C8DT01530A. PubMed DOI
Chandrasekhar V., Dey A., Mota A.J., Colacio E. Slow magnetic relaxation in Co(III)–Co(II) mixed-valence dinuclear complexes with a CoIIO5X (X = Cl, Br, NO3) distorted-octahedral coordination sphere. Inorg. Chem. 2013;52:4554–4561. doi: 10.1021/ic400073y. PubMed DOI
Kobayashi F., Ohtani R., Nakamura M., Lindoy L.F., Hayami S. Slow magnetic relaxation triggered by a structural phase transition in long-chain-alkylated cobalt(II) single-ion magnets. Inorg. Chem. 2019;58:7409–7415. doi: 10.1021/acs.inorgchem.9b00543. PubMed DOI
Halcrow M.A. Structure:function relationships in molecular spin-crossover complexes. Chem. Soc. Rev. 2011;40:4119. doi: 10.1039/c1cs15046d. PubMed DOI
Gütlich P., Gaspar A.B., Garcia Y. Spin state switching in iron coordination compounds. Beilstein J. Org. Chem. 2013;9:342–391. doi: 10.3762/bjoc.9.39. PubMed DOI PMC
Bar A.K., Pichon C., Sutter J.-P. Magnetic anisotropy in two—to eight-coordinated transition–metal complexes: Recent developments in molecular magnetism. Coord. Chem. Rev. 2016;308:346–380. doi: 10.1016/j.ccr.2015.06.013. DOI
Herchel R., Váhovská L., Potočňák I., Trávníček Z. Slow magnetic relaxation in octahedral cobalt(II) field-induced single-ion magnet with positive axial and large rhombic anisotropy. Inorg. Chem. 2014;53:5896–5898. doi: 10.1021/ic500916u. PubMed DOI
Váhovská L., Vitushkina S., Potočňák I., Trávníček Z., Herchel R. Effect of linear and non-linear pseudohalides on the structural and magnetic properties of Co(II) hexacoordinate single-molecule magnets. Dalton Trans. 2018;47:1498–1512. doi: 10.1039/C7DT04256F. PubMed DOI
Váhovská L., Bukrynov O., Potočňák I., Čižmár E., Kliuikov A., Vitushkina S., Dušek M., Herchel R. New cobalt(II) field-induced single-molecule magnet and the first example of a cobalt(III) complex with tridentate binding of a deprotonated 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole ligand. Eur. J. Inorg. Chem. 2018;2019:250–261. doi: 10.1002/ejic.201801225. DOI
Du M., Wang Q., Li C.-P., Zhao X.-J., Ribas J. Coordination assemblies of CoII/CuII/ZnII/CdIIwith 2,5-bipyridyl-1,3,4-oxadiazole and dicyanamide anion: Structural diversification and properties. Cryst. Growth Des. 2010;10:3285–3296. doi: 10.1021/cg100465u. DOI
Li C.-P., Zhao X.-H., Chen X.-D., Yu Q., Du M. Metal-involved solvothermal interconversions of pyrazinyl substituted azole derivatives: Controllability and mechanism. Crys. Growth Des. 2010;10:5034–5042. doi: 10.1021/cg100200b. DOI
Gudasi K., Patil M., Vadavi R., Shenoy R., Patil S. Transition metal complexes with a new tridentate ligand, 5-[6-(5-mercapto- 1,3,4-oxadiazol-2-yl)pyridin-2-yl]-1,3,4-oxadiazole-2-thiol. J. Serb. Chem. Soc. 2007;72:357–366. doi: 10.2298/JSC0704357G. DOI
Mathew G., Suseelan M.S., Krishnan R. Synthesis and characterization of cobalt (II) complexes of chromen-2-one-3-carboxy hydrazide and 2-(chromen-2′-onyl)-5-(aryl) 1,3,4-oxadiazole derivatives. Indian J. Chem. A. 2006;45:2040–2044.
Wang Y.-T., Tang G.-M., Ma W.-Y., Wan W.-Z. Synthesis and characterization of two new coordination supramolecular structures from a versatile unsymmetric 5-(4-pyridyl)-1,3,4-oxadiazole-2-thione (Hpot) ligand. Polyhedron. 2007;26:782–790. doi: 10.1016/j.poly.2006.09.008. DOI
Incarvito C., Rheingold A.L., Qin C.J., Gavrilova A.L., Bosnich B. Bimetallic reactivity. On the use of oxadiazoles as binucleating ligands. Inorg. Chem. 2001;40:1386–1390. doi: 10.1021/ic0012773. PubMed DOI
Incarvito C., Rheingold A.L., Gavrilova A.L., Qin C.J., Bosnich B. Bimetallic reactivity. One-site addition Two-metal oxidation reactions using a Di-Co(II) complex of a binucleating ligand with 5-and 6-coordinate sites. Inorg. Chem. 2001;40:4101–4108. doi: 10.1021/ic010235r. PubMed DOI
Subha C., Selvaraj A. Synthesis and characterization of Co (II) And Ni (II) complexes of 2, 5-substituted 1, 3, 4-oxadiazole derivatives. Res. J. Chem. Sci. 2014;4:34–38.
Goswami S., Jena H.S., Konar S. Study of Heterogeneous Catalysis by Iron-squarate based 3D metal organic framework for the transformation of tetrazines to oxadiazole derivatives. Inorg. Chem. 2014;53:7071–7073. doi: 10.1021/ic5003258. PubMed DOI
Klingele J., Kaase D., Schmucker M., Lan Y., Chastanet G., Létard J.-F. Thermal spin crossover and LIESST effect observed in complexes [Fe(LCh)2(NCX)2] [LCh = 2,5-Di(2-pyridyl)-1,3,4-Chalcadiazole; Ch = O, S, Se; X = S, Se, BH3] Inorg. Chem. 2013;52:6000–6010. doi: 10.1021/ic400342m. PubMed DOI
Köhler C., Rentschler E. The first 1,3,4-oxadiazole based dinuclear iron(II) complexes showing spin crossover behavior with hysteresis. Eur. J. Inorg. Chem. 2015;2016:1955–1960. doi: 10.1002/ejic.201501278. DOI
Phung Q.M., Domingo A., Pierloot K. Dinuclear iron(II) spin-crossover compounds: A theoretical study. Chem. Eur. J. 2017;24:5183–5190. doi: 10.1002/chem.201704441. PubMed DOI
Mani G.S., Donthiboina K., Shankaraiah N., Kamal A. Iodine-promoted one-pot synthesis of 1,3,4-oxadiazole scaffolds via sp3 C–H functionalization of azaarenes. New J. Chem. 2019;43:15999–16006. doi: 10.1039/C9NJ03573G. DOI
Lu G.-P., Lin Y.-M. A base-induced ring-opening process of 2-substituted-1,3,4-oxadiazoles for the generation of nitriles at room temperature. J. Chem. Res. 2014;38:371–374. doi: 10.3184/174751914X14007780679741. DOI
Yu W., Huang G., Zhang Y., Liu H., Dong L., Yu X., Li Y., Chang J. I2-mediated oxidative C–O bond formation for the synthesis of 1,3,4-oxadiazoles from aldehydes and hydrazides. J. Org. Chem. 2013;78:10337–10343. doi: 10.1021/jo401751h. PubMed DOI
Dijken D.J.V., Kovaříček P., Ihrig S.P., Hecht S. Acylhydrazones as widely tunable photoswitches. J. Am. Chem. Soc. 2015;137:14982–14991. doi: 10.1021/jacs.5b09519. PubMed DOI
Boča R. Theoretical Foundations of Molecular Magnetism. Elsevier; Amsterdam, The Netherlands: 1999.
Zhang Y.-Z., Gómez-Coca S., Brown A.J., Saber M.R., Zhang X., Dunbar K.R. Trigonal antiprismatic Co(ii) single molecule magnets with large uniaxial anisotropies: Importance of Raman and tunneling mechanisms. Chem. Sci. 2016;7:6519–6527. doi: 10.1039/C6SC02035F. PubMed DOI PMC
Stoll S., Schweiger A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 2006;178:42–55. doi: 10.1016/j.jmr.2005.08.013. PubMed DOI
Boča R. Magnetic Parameters and Magnetic Functions in Mononuclear Complexes Beyond the Spin-Hamiltonian Formalism. In: Mingos D.M.P., editor. Structure and Bonding. Volume 117. Springer; Heidelberg/Berlin, Germany: 2005. pp. 1–264. Magnetic Functions Beyond the Spin-Hamiltonian.
Palii A.V., Korchagin D.V., Yureva E.A., Akimov A.V., Misochko E.Y., Shilov G.V., Talantsev A.D., Morgunov R.B., Aldoshin S.M., Tsukerblat B.S. Single-ion magnet Et4N[CoII(hfac)3] with nonuniaxial Anisotropy: Synthesis, experimental characterization, and theoretical modeling. Inorg. Chem. 2016;55:9696–9706. doi: 10.1021/acs.inorgchem.6b01473. PubMed DOI
Titiš J., Boča R. Magnetostructuraldcorrelations in hexacoordinated cobalt(II) complexes. Inorg. Chem. 2011;50:11838–11845. doi: 10.1021/ic202108j. PubMed DOI
Neese F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012;2:73–78. doi: 10.1002/wcms.81. DOI
Neese F. Software update: The ORCA program system, version 4.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018;8:e1327. doi: 10.1002/wcms.1327. DOI
Angeli C., Cimiraglia R., Malrieu J.P. N-electron valence state perturbation theory: A fast implementation of the strongly contracted variant. Chem. Phys. Lett. 2001;350:297. doi: 10.1016/S0009-2614(01)01303-3. DOI
Angeli C., Cimiraglia R., Evangelisti S., Leininger T., Malrieu J.P. Introduction of n-electron valence states for multireference perturbation theory. J. Chem. Phys. 2001;114:10252–10264. doi: 10.1063/1.1361246. DOI
Angeli C., Cimiraglia R., Malrieu J.P. n-electron valence state perturbation theory: A spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants. J. Chem. Phys. 2002;117:9138. doi: 10.1063/1.1515317. DOI
Becke A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A. 1988;38:3098. doi: 10.1103/PhysRevA.38.3098. PubMed DOI
Perdew J.P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B Condens. Matter Mater. Phys. 1986;33:8822. doi: 10.1103/PhysRevB.33.8822. PubMed DOI
Perdew J.P. Erratum: Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B Condens. Matter Mater. Phys. 1986;34:7406. doi: 10.1103/PhysRevB.34.7406. PubMed DOI
Grimme S., Ehrlich S., Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI
Grimme S., Antony J., Ehrlich S., Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI
Suturina E.A., Maganas D., Bill E., Atanasov M., Neese F. Magneto-structural correlations in a series of pseudotetrahedral [CoII(XR)4]2–single molecule magnets: An ab initio ligand field study. Inorg. Chem. 2015;54:9948–9961. doi: 10.1021/acs.inorgchem.5b01706. PubMed DOI
Petit S., Pilet G., Luneau D., Chibotaru L.F., Ungur L. A dinuclear cobalt(ii) complex of calix [8] arenes exibiting strong magnetic anisotropy. Dalton Trans. 2007;40:4582–4588. doi: 10.1039/b708926k. PubMed DOI
Mondal A., Kharwar A.K., Konar S. Sizeable effect of lattice solvent on field induced slow magnetic relaxation in seven coordinated CoII complexes. Inorg. Chem. 2019;58:10686–10693. doi: 10.1021/acs.inorgchem.9b00615. PubMed DOI
Dassault Systèmes BIOVIA . BIOVIA Draw, Version 19.1. Dassault Systèmes; San Diego, CA, USA: 2019.
Menges F. Spectragryph—Optical Spectroscopy Software, Version 1.2.12. [(accessed on 1 October 2019)];2019 Available online: http://www.effemm2.de/spectragryph/
Socrates G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. John Wiley & Sons LTD; Chichester, UK: 2015.
iNMR. [(accessed on 3 December 2019)]; Available online: http://www.inmr.net.
CrysAlisPro, Version 1.171.39.9g Rigaku Oxford Diffraction. [(accessed on 26 September 2016)];2015 Available online: https://www.rigaku.com/en/products/smc/crysalis.
Sheldrick G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A. 2015;71:3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC
Farrugia L.J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Cryst. 1999;32:837–838. doi: 10.1107/S0021889899006020. DOI
Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC
Brandenburg K., Putz H. DIAMOND. Crystal Impact GbR; Bonn, Germany: 1999.