Different Reaction Specificities of F420H2-Dependent Reductases Facilitate Pyrrolobenzodiazepines and Lincomycin To Fit Their Biological Targets
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31944685
DOI
10.1021/jacs.9b11234
Knihovny.cz E-zdroje
- MeSH
- benzodiazepiny chemie metabolismus farmakologie MeSH
- cyklické peptidy biosyntéza chemie farmakologie MeSH
- depsipeptidy biosyntéza chemie farmakologie MeSH
- katalýza MeSH
- linkomycin biosyntéza chemie farmakologie MeSH
- molekulární modely MeSH
- oxidoreduktasy chemie metabolismus MeSH
- prolin analogy a deriváty metabolismus MeSH
- pyrroly chemie metabolismus farmakologie MeSH
- riboflavin analogy a deriváty chemie metabolismus MeSH
- substrátová specifita MeSH
- tyrosin analogy a deriváty metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- benzodiazepiny MeSH
- coenzyme F420 MeSH Prohlížeč
- cyklické peptidy MeSH
- depsipeptidy MeSH
- F420H2 dehydrogenase MeSH Prohlížeč
- griselimycin MeSH Prohlížeč
- hormaomycin MeSH Prohlížeč
- linkomycin MeSH
- oxidoreduktasy MeSH
- prolin MeSH
- pyrrolo(2,1-c)(1,4)benzodiazepine MeSH Prohlížeč
- pyrroly MeSH
- riboflavin MeSH
- tyrosin MeSH
Antitumor pyrrolobenzodiazepines (PBDs), lincosamide antibiotics, quorum-sensing molecule hormaomycin, and antimicrobial griselimycin are structurally and functionally diverse groups of actinobacterial metabolites. The common feature of these compounds is the incorporation of l-tyrosine- or l-leucine-derived 4-alkyl-l-proline derivatives (APDs) in their structures. Here, we report that the last reaction in the biosynthetic pathway of APDs, catalyzed by F420H2-dependent Apd6 reductases, contributes to the structural diversity of APD precursors. Specifically, the heterologous overproduction of six Apd6 enzymes demonstrated that Apd6 from the biosynthesis of PBDs and hormaomycin can reduce only an endocyclic imine double bond, whereas Apd6 LmbY and partially GriH from the biosyntheses of lincomycin and griselimycin, respectively, also reduce the more inert exocyclic double bond of the same 4-substituted Δ1-pyrroline-2-carboxylic acid substrate, making LmbY and GriH unusual, if not unique, among reductases. Furthermore, the differences in the reaction specificity of the Apd6 reductases determine the formation of the fully saturated APD moiety of lincomycin versus the unsaturated APD moiety of PBDs, providing molecules with optimal shapes to bind their distinct biological targets. Moreover, the Apd6 reductases establish the first F420H2-dependent enzymes from the luciferase-like hydride transferase protein superfamily in the biosynthesis of bioactive molecules. Finally, our bioinformatics analysis demonstrates that Apd6 and their homologues, widely distributed within several bacterial phyla, play a role in the formation of novel yet unknown natural products with incorporated l-proline-like precursors and likely in the microbial central metabolism.
Citace poskytuje Crossref.org
figshare
10.6084/m9.figshare.11417559