Antiproliferative, DNA binding, and cleavage properties of dinuclear Co(III) complexes containing the bioactive quinizarin ligand
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
32112290
DOI
10.1007/s00775-020-01765-4
PII: 10.1007/s00775-020-01765-4
Knihovny.cz E-resources
- Keywords
- Antiproliferative activity, Cobalt, DNA, Quinizarin, Radicals,
- MeSH
- Anthraquinones chemistry pharmacology MeSH
- DNA chemistry MeSH
- Cobalt chemistry pharmacology MeSH
- Coordination Complexes chemical synthesis chemistry pharmacology MeSH
- Humans MeSH
- Ligands MeSH
- Molecular Conformation MeSH
- Tumor Cells, Cultured MeSH
- Cell Proliferation drug effects MeSH
- Antineoplastic Agents chemical synthesis chemistry pharmacology MeSH
- Drug Screening Assays, Antitumor MeSH
- DNA Cleavage MeSH
- Binding Sites drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 1,4-dihydroxyanthraquinone MeSH Browser
- Anthraquinones MeSH
- calf thymus DNA MeSH Browser
- DNA MeSH
- Cobalt MeSH
- Coordination Complexes MeSH
- Ligands MeSH
- Antineoplastic Agents MeSH
The adverse side effects and acquired resistance associated with the clinical application of traditional platinum-based anticancer drugs have forced investigation of alternative transition metal-based compounds and their cytostatic properties. Over the last years, the anticancer potential of cobalt complexes has been extensively studied, and in-depth analyses of their mode of action have been conducted. In this work, we present antiproliferative activity against human cancer cells of the dinuclear Co(III) complexes bearing the quinizarin ligand and tris(2-aminoethyl)amine (tren, compound 1) or tris(2-pyridylmethyl)amine (tpa, compound 2) co-ligands. To contribute the understanding mechanisms of biological action of these compounds, their association with DNA in the cells, DNA binding in cell-free media, and DNA cleavage capability were investigated in detail. The results demonstrate that both complexes interact with DNA in tumor cells. However, their mechanism of antiproliferative action is different, and this difference is mirrored by distinct antiproliferative activity. The antiproliferative effect of 1 is connected with its ability to intercalate into DNA and subsequently to inhibit activities of DNA processing enzymes. In contrast, the total antiproliferative efficiency of 2, thanks to its redox properties, appears to be connected with its ability to form radicals and, consequently, with the ability of 2 to cleave DNA. Hence, the findings presented in this study may significantly contribute to understanding the antitumor potential of cobalt complexes. Dinuclear Co(III) complexes containing the bioactive quinizarin ligand exhibit antiproliferative activity based on distinct mechanism.
See more in PubMed
Johnstone TC, Suntharalingam K, Lippard SJ (2016) Chem Rev 116:3436–3486 DOI
Hall MD, Failes TW, Yamamoto N, Hambley TW (2007) Dalton Trans 36:3983–3990 DOI
Heffern MC, Yamamoto N, Holbrook RJ, Eckermann AL, Meade TJ (2013) Curr Opin Chem Biol 17:189–196 DOI
Munteanu CR, Suntharalingam K (2015) Dalton Trans 44:13796–13808 DOI
Ahn GO, Botting KJ, Patterson AV, Ware DC, Tercel M, Wilson WR (2006) Biochem Pharmacol 71:1683–1694 DOI
Failes TW, Cullinane C, Diakos CI, Yamamoto N, Lyons JG, Hambley TW (2007) Chem Eur J 13:2974–2982 DOI
Bonnitcha PD, Kim BJ, Hocking RK, Clegg JK, Turner P, Neville SM, Hambley TW (2012) Dalton Trans 41:11293–11304 DOI
Ahmad M, Afzal M, Tabassum S, Kalińska B, Mrozinski J, Bharadwaj PK (2014) Eur J Med Chem 74:683–693 DOI
Massoud SS, Perkins RS, Louka FR, Xu W, Le Roux A, Dutercq Q, Fischer RC, Mautner FA, Handa M, Hiraoka Y, Kreft GL, Bortolotto T, Terenzi H (2014) Dalton Trans 43:10086–10103 DOI
Hengstler JG, Bolm-Audorff U, Faldum A, Janssen K, Reifenrath M, Götte W, Jung D, Mayer-Popken O, Fuchs J, Gebhard S, Bienfait HG, Schlink K, Dietrich C, Faust D, Epe B, Oesch F (2003) Carcinogenesis 24:63–73 DOI
Stenger C, Naves T, Verdier M, Ratinaud M (2011) Int J Oncol 39:601–609 PubMed
He Y, Gan X, Zhang L, Liu B, Zhu Z, Li T, Zhu J, Chen J, Yu H (2018) Am J Physiol Cell Physiol 315:C389–C397 DOI
Cressey PB, Eskandari A, Bruno PM, Lu CX, Hemann MT, Suntharalingam K (2016) ChemBioChem 17:1713–1718 DOI
Cressey PB, Eskandari A, Suntharalingam K (2017) Inorganics 5:12 DOI
Eskandari A, Kundu A, Lu C, Ghosh S, Suntharalingam K (2018) Dalton Trans 47:5755–5763 DOI
Renfrew AK (2014) Metallomics 6:1324–1335 DOI
de Souza ICA, Faro LV, Pinheiro CB, Gonzaga DTG, da Silva FdC, Ferreira VF, Miranda FdS, Scarpellini M, Lanznaster M (2016) Dalton Trans 45:13671–13674 DOI
Kozsup M, Dömötör O, Nagy S, Farkas E, Enyedy EA, Buglyó P (2019) J Inorg Biochem. https://doi.org/10.1016/jinogbio.2019.110963 PubMed DOI
Batchelor-McAuley C, Dimov IB, Aldous L, Compton RG (2011) Proc Natl Acad Sci USA 108:19891–19895 DOI
Verebová V, Adamcik J, Danko P, Podhradský D, Miškovský P, Staničová J (2014) Biochem Biophys Res Commun 444:50–55 DOI
Gholivand MB, Kashanian S, Peyman H (2012) Spectrochim Acta Part A 87:232–240 DOI
Rossi S, Tabolacci C, Lentini A, Provenzano B, Carlomosti F, Frezzotti S, Beninati S (2010) Anticancer Res 30:445–449 PubMed
Zengin G, Degirmenci N, Alpsoy L, Aktumsek A (2016) Hum Exp Toxicol 35:544–553 DOI
Lee H-S (2003) J Microbiol Biotechnol 13:529–536
Gholivand MB, Kashanian S, Peyman H, Roshanfekr H (2011) Eur J Med Chem 46:2630–2638 DOI
Ghosh P, Devi GP, Priya R, Amrita A, Sivaramakrishna A, Babu S, Siva R (2013) Appl Biochem Biotechnol 170:1127–1137 DOI
Lozano HJ, Busto N, Espino G, Carbayo A, Leal JM, Platts JA, Garcia B (2017) Dalton Trans 46:3611–3622 DOI
Kostrhunova H, Zajac J, Novohradsky V, Kasparkova J, Malina J, Aldrich-Wright JR, Petruzzella E, Sirota R, Gibson D, Brabec V (2019) J Med Chem 62:5176–5190 DOI
Malina J, Čechová K, Farrell NP, Brabec V (2019) Inorg Chem 58:6804–6810 DOI
Pracharova J, Radosova Muchova T, Dvorak Tomastikova E, Intini FP, Pacifico C, Natile G, Kasparkova J, Brabec V (2016) Dalton Trans 45:13179–13186 DOI
Novohradsky V, Zajac J, Vrana O, Kasparkova J, Brabec V (2018) Oncotarget 9:28456–28473 PubMed PMC
Subramanian A, Kumar YM, Arunachalam S, Gowdhami B, Sundaram K, Solomon V, Venuvanalingam P, Akbarsha MA, Sundararaman M (2019) Sci Rep 9:2721 DOI
Palchaudhuri R, Hergenrother PJ (2007) Curr Opin Biotechnol 18:497–503 DOI
Norden B, Kubista M, Kurucsev T (1992) Q Rev Biophys 25:51–170 DOI
Rodger A, Marington R, Geeves MA, Hicks M, de Alwis L, Halsall DJ, Dafforn TR (2006) Phys Chem Chem Phys 8:3161–3171 DOI
Satyanarayana S, Dabrowiak JC, Chaires JB (1992) Biochemistry 31:9319–9324 DOI
Ihara T, Ikegami T, Fujii T, Kitamura Y, Sueda S, Takagi M, Jyo A (2006) J Inorg Biochem 100:1744–1754 DOI
Drwal MN, Agama K, Wakelin LPG, Pommier Y, Griffith R (2011) PLoS One 6:e25150 DOI
Chamaon K, Schoenfeld P, Awiszus F, Bertrand J, Lohmann C (2018) J Biomed Mater Res Part B 107:1246–1253 DOI
Lan AP, Chen J, Chai ZF, Hu Y (2016) Biometals 29:665–678 DOI