Renal handling of amphotericin B and amphotericin B-deoxycholate and potential renal drug-drug interactions with selected antivirals
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24957831
PubMed Central
PMC4187917
DOI
10.1128/aac.02829-14
PII: AAC.02829-14
Knihovny.cz E-zdroje
- MeSH
- amfotericin B metabolismus MeSH
- antivirové látky metabolismus MeSH
- buněčné linie MeSH
- fixní kombinace léků MeSH
- HeLa buňky MeSH
- krysa rodu Rattus MeSH
- kyselina deoxycholová metabolismus MeSH
- ledviny metabolismus MeSH
- lékové interakce MeSH
- lidé MeSH
- potkani Wistar MeSH
- protein 1 přenášející organické anionty metabolismus MeSH
- proteiny přenášející organické kationty metabolismus MeSH
- psi MeSH
- teplota MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amfotericin B MeSH
- amphotericin B, deoxycholate drug combination MeSH Prohlížeč
- antivirové látky MeSH
- fixní kombinace léků MeSH
- kyselina deoxycholová MeSH
- protein 1 přenášející organické anionty MeSH
- proteiny přenášející organické kationty MeSH
Amphotericin B (AmB) is excreted via the renal excretion route. This excretion process may result in nephrotoxicity. However, relevant information on the precise renal excretion mechanisms is not available. The aim of the study was to analyze the possible interaction of AmB or its prodrug AmB deoxycholate (AmB-DOC) with the typical renal organic anion transporters (OATs) and organic cation transporters (OCTs), using cellular and organ models. The relevant transport systems were then investigated in terms of the drug-drug interactions of AmB-DOC with antivirals that might potentially be used concomitantly. To analyze the renal excretion mechanisms of [(3)H]AmB, perfused rat kidney was employed. HeLa and MDCK II cells transiently transfected with human OAT1 (hOAT1) or hOCT2 were used as the cellular models. A significant tubular secretion of AmB was demonstrated in the perfused rat kidney. The cellular studies performed confirmed the active transport of AmB into cells. AmB did not interact with hOAT1 but strongly inhibited hOCT2. In contrast, AmB-DOC inhibited both hOAT1 and hOCT2. However, [(3)H]AmB cellular uptake by hOAT1 and hOCT2 was not found. AmB-DOC interacted significantly with adefovir, tenofovir, and cidofovir in hOAT1-transfected cells at supratherapeutic concentrations. In conclusion, the significant potency of AmB and AmB-DOC for inhibiting the transporters was demonstrated in this study. The secretion of AmB in the renal tubules is likely not related to the transporters here, since the drug was not proven to be a substrate for them. Drug-drug interactions of AmB and the antivirals used in this study on the investigated transporters are not probable.
Zobrazit více v PubMed
Gubbins PO, Amsden JR. 2005. Drug-drug interactions of antifungal agents and implications for patient care. Expert Opin. Pharmacother. 6:2231–2243. 10.1517/14656566.6.13.2231 PubMed DOI
Laniado-Laborín R, Cabrales-Vargas MN. 2009. Amphotericin B: side effects and toxicity. Rev. Iberoam. Micol. 26:223–227. 10.1016/j.riam.2009.06.003 PubMed DOI
Chen SC, Playford EG, Sorrell TC. 2010. Antifungal therapy in invasive fungal infections. Curr. Opin. Pharmacol. 10:522–530. 10.1016/j.coph.2010.06.002 PubMed DOI
Pagano L, Caira M, Valentini CG, Posteraro B, Fianchi L. 2010. Current therapeutic approaches to fungal infections in immunocompromised hematological patients. Blood Rev. 24:51–61. 10.1016/j.blre.2009.11.003 PubMed DOI
Klaassen CD, Aleksunes LM. 2010. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol. Rev. 62:1–96. 10.1124/pr.109.002014 PubMed DOI PMC
Kleinberg M. 2006. What is the current and future status of conventional amphotericin B? Int. J. Antimicrob. Agents. 27:12–16. 10.1016/j.ijantimicag.2006.03.013 PubMed DOI
Sun HY, Wagener MM, Singh N. 2009. Cryptococcosis in solid-organ, hematopoietic stem cell, and tissue transplant recipients: evidence-based evolving trends. Clin. Infect. Dis. 48:1566–1576. 10.1086/598936 PubMed DOI
Bicanic T, Ogden D, Whitney L, Loyse A, Jarvis J. 2012. British HIV Association opportunistic infection guidelines: in defense of amphotericin B deoxycholate. HIV Med. 13:636–637. 10.1111/j.1468-1293.2012.01022.x PubMed DOI
Ascher SB, Smith PB, Watt K, Benjamin DK, Cohen-Wolkowiez M, Clark RH, Benjamin DK, Jr, Moran C. 2012. Antifungal therapy and outcomes in infants with invasive Candida infections. Pediatr. Infect. Dis. J. 31:439–443. 10.1097/INF.0b013e3182467a72 PubMed DOI PMC
Luke RG, Boyle JA. 1998. Renal effects of amphotericin B lipid complex. Am. J. Kidney Dis. 31:780–785. 10.1016/S0272-6386(98)70046-0 PubMed DOI
Saliba F, Dupont B. 2008. Renal impairment and amphotericin B formulations in patients with invasive fungal infections. Med. Mycol. 46:97–112. 10.1080/13693780701730469 PubMed DOI
Safdar A, Ma J, Saliba F, Dupont B, Wingard JR, Hachem RY, Mattiuzzi GN, Chandrasekar PH, Kontoyiannis DP, Rolston KV, Walsh TJ, Champlin RE, Raad II. 2010. Drug-induced nephrotoxicity caused by amphotericin B lipid complex and liposomal amphotericin B: a review and meta-analysis. Medicine (Baltimore) 89:236–244. 10.1097/MD.0b013e3181e9441b PubMed DOI
Fanos V, Cataldi L. 2001. Renal transport of antibiotics and nephrotoxicity: a review. J. Chemother. 13:461–472. 10.1179/joc.2001.13.5.461 PubMed DOI
Motohashi H, Sakurai Y, Saito H, Masuda S, Urakami Y, Goto M, Fukatsu A, Ogawa O, Inui K. 2002. Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J. Am. Soc. Nephrol. 13:866–874 PubMed
Hilgendorf C, Ahlin G, Seithel A, Artursson P, Ungell AL, Karlsson J. 2007. Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab. Dispos. 35:1333–1340. 10.1124/dmd.107.014902 PubMed DOI
Launay-Vacher V, Izzedine H, Karie S, Hulot JS, Baumelou A, Deray G. 2006. Renal tubular drug transporters. Nephron Physiol. 103:p97–p106. 10.1159/000092212 PubMed DOI
Endres CJ, Hsiao P, Chung FS, Unadkat JD. 2006. The role of transporters in drug interactions. Eur. J. Pharm. Sci. 27:501–517. 10.1016/j.ejps.2005.11.002 PubMed DOI
Müller F, Fromm MF. 2011. Transporter-mediated drug-drug interactions. Pharmacogenomics 12:1017–1037. 10.2217/pgs.11.44 PubMed DOI
Mandíková J, Volková M, Pávek P, Česnek M, Janeba Z, Kubíčcek V, Trejtnar F. 2013. Interactions with selected drug renal transporters and transporter-mediated cytotoxicity in antiviral agents from the group of acyclic nucleoside phosphonates. Toxicology 311:135–146. 10.1016/j.tox.2013.07.004 PubMed DOI
Trejtnar F, Laznicek M, Laznickova A, Mather SJ. 2000. Pharmacokinetics and renal handling of 99mTc-labeled peptides. J. Nucl. Med. 41:177–182 PubMed
Heyrovsky A. 1956. A new method for the determination of inulin in plasma and urine. Clin. Chim. Acta 1:470–474. 10.1016/0009-8981(56)90020-1 PubMed DOI
Chen J, Terada T, Ogasawara K, Katsura T, Inui K. 2008. Adaptive responses of renal organic anion transporter 3 (OAT3) during cholestasis. Am. J. Physiol. Renal Physiol. 295:F247–F252. 10.1152/ajprenal.00139.2008 PubMed DOI
Ullrich KJ. 1997. Renal transporters for organic anions and organic cations. Structural requirements for substrates. J. Membr. Biol. 158:95–107 PubMed
Srimaroeng C, Perry JL, Pritchard JB. 2008. Physiology, structure, and regulation of the cloned organic anion transporters. Xenobiotica 38:889–935. 10.1080/00498250801927435 PubMed DOI PMC
Vertut-Doï A, Ohnishi SI, Bolard J. 1994. The endocytic process in CHO cells, a toxic pathway of the polyene antibiotic amphotericin B. Antimicrob. Agents Chemother. 38:2373–2379. 10.1128/AAC.38.10.2373 PubMed DOI PMC
VanWert AL, Gionfriddo MR, Sweet DH. 2010. Organic anion transporters: discovery, pharmacology, regulation and roles in pathophysiology. Biopharm. Drug Dispos. 31:1–71. 10.1002/bdd.693 PubMed DOI
Koepsell H, Lips K, Volk C. 2007. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm. Res. 24:1227–1251. 10.1007/s11095-007-9254-z PubMed DOI
Lepsy CS, Guttendorf RJ, Kugler AR, Smith DE. 2003. Effects of organic anion, organic cation, and dipeptide transport inhibitors on cefdinir in the isolated perfused rat kidney. Antimicrob. Agents Chemother. 47:689–696. 10.1128/AAC.47.2.689-696.2003 PubMed DOI PMC
Ma Z, Wang J, Nation RL, Li J, Turnidge JD, Coulthard K, Milne RW. 2009. Renal disposition of colistin in the isolated perfused rat kidney. Antimicrob. Agents Chemother. 53:2857–2864. 10.1128/AAC.00030-09 PubMed DOI PMC
Ishizaki J, Ito S, Jin M, Shimada T, Ishigaki T, Harasawa Y, Takami A, Nakao S, Miyamoto K. 2008. Mechanism of decrease of oral bioavailability of cyclosporine during immunotherapy upon coadministration of amphotericin B. Biopharm. Drug Dispos. 29:195–203. 10.1002/bdd.604 PubMed DOI
Robbie G, Chiou WL. 1998. Elucidation of human amphotericin B pharmacokinetics: identification of a new potential factor affecting interspecies pharmacokinetic scaling. Pharm. Res. 15:1630–1636. 10.1023/A:1011923704731 PubMed DOI
Bekersky I, Fielding RM, Dressler DE, Lee JW, Buell DN, Walsh TJ. 2002. Plasma protein binding of amphotericin B and pharmacokinetics of bound versus unbound amphotericin B after administration of intravenous liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate. Antimicrob. Agents Chemother. 46:834–840. 10.1128/AAC.46.3.834-840.2002 PubMed DOI PMC
Wasan KM, Kennedy AL, Cassidy SM, Ramaswamy M, Holtorf L, Chou JW, Pritchard PH. 1998. Pharmacokinetics, distribution in serum lipoproteins and tissues, and renal toxicities of amphotericin B and amphotericin B lipid complex in a hypercholesterolemic rabbit model: single-dose studies. Antimicrob. Agents Chemother. 42:3146–3152 PubMed PMC
Brajtburg J, Bolard J. 1996. Carrier effects on biological activity of amphotericin B. Clin. Microbiol. Rev. 9:512–531 PubMed PMC
Legrand P, Chéron M, Leroy L, Bolard J. 1997. Release of amphotericin B from delivery systems and its action against fungal and mammalian cells. J. Drug Target. 4:311–319. 10.3109/10611869708995847 PubMed DOI
Gubbins PO, Heldenbrand S. 2010. Clinically relevant drug interactions of current antifungal agents. Mycoses 53:95–113. 10.1111/j.1439-0507.2009.01820.x PubMed DOI
Bellmann R. 2007. Clinical pharmacokinetics of systemically administered antimycotics. Curr. Clin. Pharmacol. 2:37–58. 10.2174/157488407779422311 PubMed DOI
Nies AT, Koepsell H, Damme K, Schwab M. 2011. Organic cation transporters (OCTs, MATEs), in vitro and in vivo evidence for the importance in drug therapy. Handb. Exp. Pharmacol. 201:105–167. 10.1007/978-3-642-14541-4_3 PubMed DOI
Ciarimboli G. 2011. Role of organic cation transporters in drug-induced toxicity. Expert Opin. Drug Metab. Toxicol. 7:159–174. 10.1517/17425255.2011.547474 PubMed DOI
Cihlar T, Lin DC, Pritchard JB, Fuller MD, Mendel DB, Sweet DH. 1999. The antiviral nucleotide analogs cidofovir and adefovir are novel substrates for human and rat renal organic anion transporter 1. Mol. Pharmacol. 56:570–580 PubMed
Uwai Y, Ida H, Tsuji Y, Katsura T, Inui KI. 2007. Renal transport of adefovir, cidofovir, and tenofovir by SLC22A family members (hOAT1, hOAT3, and hOCT2). Pharm. Res. 24:811–815. 10.1007/s11095-006-9196-x PubMed DOI
Cundy KC. 1999. Clinical pharmacokinetics of the antiviral nucleotide analogues cidofovir and adefovir. Clin. Pharmacokinet. 36:127–143. 10.2165/00003088-199936020-00004 PubMed DOI
Delahunty T, Bushman L, Fletcher CV. 2006. Sensitive assay for determining plasma tenofovir concentrations by LC/MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 830:6–12. 10.1016/j.jchromb.2005.10.015 PubMed DOI
Kearney BP, Ramanathan S, Cheng AK, Ebrahimi R, Shah J. 2005. Systemic and renal pharmacokinetics of adefovir and tenofovir upon coadministration. J. Clin. Pharmacol. 45:935–940. 10.1177/0091270005278949 PubMed DOI
Lee WK, Wolff NA, Thévenod F. 2009. Organic cation transporters: physiology, toxicology and special focus on ethidium as a novel substrate. Curr. Drug Metab. 10:617–631. 10.2174/138920009789375360 PubMed DOI
Dresser MJ, Leabman MK, Giacomini KM. 2001. Transporters involved in the elimination of drugs in the kidney: organic anion transporters and organic cation transporters. J. Pharm. Sci. 90:397–421. 10.1002/1520-6017(200104)90:4<397::AID-JPS1000>3.0.CO;2-D PubMed DOI