c-MYC expression and maturity phenotypes are associated with outcome benefit from addition of ixazomib to lenalidomide-dexamethasone in myeloma
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Millennium Pharmaceuticals, Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
PubMed
32145111
PubMed Central
PMC7317705
DOI
10.1111/ejh.13405
Knihovny.cz E-zdroje
- Klíčová slova
- RNA sequencing, c-myc Proto-Oncogenes, multiple myeloma, mutation, progression-free survival,
- MeSH
- dexamethason MeSH
- doba přežití bez progrese choroby MeSH
- exprese genu * MeSH
- glycin analogy a deriváty MeSH
- lenalidomid MeSH
- lidé středního věku MeSH
- lidé MeSH
- mnohočetný myelom farmakoterapie genetika mortalita patologie MeSH
- nádorové biomarkery MeSH
- prognóza MeSH
- protokoly protinádorové kombinované chemoterapie škodlivé účinky terapeutické užití MeSH
- protoonkogenní proteiny c-myc genetika MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- sloučeniny boru MeSH
- staging nádorů MeSH
- stanovení celkové genové exprese MeSH
- stupeň nádoru MeSH
- výsledek terapie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dexamethason MeSH
- glycin MeSH
- ixazomib MeSH Prohlížeč
- lenalidomid MeSH
- nádorové biomarkery MeSH
- protoonkogenní proteiny c-myc MeSH
- sloučeniny boru MeSH
OBJECTIVES: In the TOURMALINE-MM1 phase 3 trial in relapsed/refractory multiple myeloma, ixazomib-lenalidomide-dexamethasone (IRd) showed different magnitudes of progression-free survival (PFS) benefit vs placebo-Rd according to number and type of prior therapies, with greater benefit seen in patients with >1 prior line of therapy or 1 prior line of therapy without stem cell transplantation (SCT). METHODS: RNA sequencing data were used to investigate the basis of these differences. RESULTS: The PFS benefit of IRd vs placebo-Rd was greater in patients with tumors expressing high c-MYC levels (median not reached vs 11.3 months; hazard ratio [HR] 0.42; 95% CI, 0.26, 0.66; P < .001) compared with in those expressing low c-MYC levels (median 20.6 vs 16.6 months; HR 0.75; 95% CI, 0.42, 1.2). Expression of c-MYC in tumors varied based on the number and type of prior therapy received, with the lowest levels observed in tumors of patients who had received 1 prior line of therapy including SCT. These tumors also had higher expression levels of CD19 and CD81. CONCLUSIONS: PFS analyses suggest that lenalidomide and ixazomib target tumors with different levels of c-MYC, CD19, and CD81 expression, thus providing a potential rationale for the differential benefits observed in the TOURMALINE-MM1 study. This trial was registered at www.clinicaltrials.gov as: NCT01564537.
3rd Department of Internal Medicine Semmelweis University Budapest Hungary
Department of Haematology Christchurch Hospital Christchurch New Zealand
Department of Hematology University Hospital Hôtel Dieu University of Nantes Nantes France
Division of Hematology Mayo Clinic Rochester MN USA
Hematologic Oncology Dana Farber Cancer Institute Boston MA USA
Hematology and Oncology University Hospital Brno Brno Czech Republic
Hematology IUC Oncopole Toulouse France
Millennium Pharmaceuticals Inc Cambridge MA USA
Southern Alberta Cancer Research Institute University of Calgary Calgary AB Canada
Zobrazit více v PubMed
Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer‐associated genes. Nature. 2013;499(7457):214‐218. PubMed PMC
Manier S, Salem KZ, Park J, Landau DA, Getz G, Ghobrial IM. Genomic complexity of multiple myeloma and its clinical implications. Nat Rev Clin Oncol. 2017;14(2):100‐113. PubMed
de Mel S, Lim SH, Tung ML, Chng W‐J. Implications of heterogeneity in multiple myeloma. Biomed Res Int. 2014;2014:1‐12. PubMed PMC
Majumder MM, Silvennoinen R, Anttila P, et al. Identification of precision treatment strategies for relapsed/refractory multiple myeloma by functional drug sensitivity testing. Oncotarget. 2017;8(34):56338‐56350. PubMed PMC
Cornell RF, Kassim AA. Evolving paradigms in the treatment of relapsed/refractory multiple myeloma: increased options and increased complexity. Bone Marrow Transplant. 2016;51(4):479‐491. PubMed PMC
Moreau P, Masszi T, Grzasko N, et al. Oral ixazomib, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med. 2016;374(17):1621‐1634. PubMed
Mateos MV, Masszi T, Grzasko N, et al. Impact of prior therapy on the efficacy and safety of oral ixazomib‐lenalidomide‐dexamethasone vs. placebo‐lenalidomide‐dexamethasone in patients with relapsed/refractory multiple myeloma in TOURMALINE‐MM1. Haematologica. 2017;102(10):1767‐1775. PubMed PMC
Dang CV. MYC metabolism, cell growth, and tumorigenesis. Cold Spring Harb Perspect Med. 2013;3(8):a014217. PubMed PMC
Kuehl WM, Bergsagel PL. Molecular pathogenesis of multiple myeloma and its premalignant precursor. J Clin Invest. 2012;122(10):3456‐3463. PubMed PMC
Glitza IC, Lu G, Shah R, et al. Chromosome 8q24.1/c‐MYC abnormality: a marker for high‐risk myeloma. Leuk Lymphoma. 2015;56(3):602‐607. PubMed PMC
Chng W‐J, Huang GF, Chung TH, et al. Clinical and biological implications of MYC activation: a common difference between MGUS and newly diagnosed multiple myeloma. Leukemia. 2011;25(6):1026‐1035. PubMed PMC
Wilson A, Murphy MJ, Oskarsson T, et al. c‐Myc controls the balance between hematopoietic stem cell self‐renewal and differentiation. Genes Dev. 2004;18(22):2747‐2763. PubMed PMC
Vences‐Catalán F, Kuo C‐C, Sagi Y, et al. A mutation in the human tetraspanin CD81 gene is expressed as a truncated protein but does not enable CD19 maturation and cell surface expression. J Clin Immunol. 2015;35(3):254‐263. PubMed
Avet‐Loiseau H, Attal M, Moreau P, et al. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myelome. Blood. 2007;109(8):3489‐3495. PubMed
Keats JJ, Chesi M, Egan JB, et al. Clonal competition with alternating dominance in multiple myeloma. Blood. 2012;120(5):1067‐1076. PubMed PMC
Walker BA, Wardell CP, Brioli A, et al. Translocations at 8q24 juxtapose MYC with genes that harbor superenhancers resulting in overexpression and poor prognosis in myeloma patients. Blood Cancer J. 2014;4:e191. PubMed PMC
Weinhold N, Kirn D, Seckinger A, et al. Concomitant gain of 1q21 and MYC translocation define a poor prognostic subgroup of hyperdiploid multiple myeloma. Haematologica. 2016;101(3):e116‐e119. PubMed PMC
Brioli A, Melchor L, Walker BA, Davies FE, Morgan GJ. Biology and treatment of myeloma. Clin Lymphoma Myeloma Leuk. 2014;14(Suppl):S65‐S70. PubMed
Jovanovic KK, Roche‐Lestienne C, Ghobrial IM, Facon T, Quesnel B, Manier S. Targeting MYC in multiple myeloma. Leukemia. 2018;32(6):1295‐1306. PubMed
Kuehl WM, Bergsagel PL. Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer. 2002;2(3):175‐187. PubMed
Dang CV. c‐Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol. 1999;19(1):1‐11. PubMed PMC
Lin Y, Wong K, Calame K. Repression of c‐myc transcription by Blimp‐1, an inducer of terminal B cell differentiation. Science. 1997;276(5312):596‐599. PubMed
Murn J, Mlinaric‐Rascan I, Vaigot P, Alibert O, Frouin V, Gidrol X. A Myc‐regulated transcriptional network controls B‐cell fate in response to BCR triggering. BMC Genomics. 2009;10:323. PubMed PMC
Ravi D, Beheshti A, Abermil N, et al. Proteasomal inhibition by ixazomib induces CHK1 and MYC‐dependent cell death in T‐cell and Hodgkin lymphoma. Cancer Res. 2016;76(11):3319‐3331. PubMed PMC
Wirth M, Stojanovic N, Christian J, et al. MYC and EGR1 synergize to trigger tumor cell death by controlling NOXA and BIM transcription upon treatment with the proteasome inhibitor bortezomib. Nucleic Acids Res. 2014;42(16):10433‐10447. PubMed PMC
Szabo AG, Gang AO, Pedersen MO, Poulsen TS, Klausen TW, Norgaard P. Overexpression of c‐myc is associated with adverse clinical features and worse overall survival in multiple myeloma. Leuk Lymphoma. 2016;57(11):2526‐2534. PubMed
Franssen LE, Nijhof IS, Couto S, et al. Cereblon loss and up‐regulation of c‐Myc are associated with lenalidomide resistance in multiple myeloma patients. Haematologica. 2018;103(8):e368‐e371. PubMed PMC
Jimenez‐Zepeda VH, Reece DE, Trudel S, Chen C, Tiedemann R, Kukreti V. Early relapse after single auto‐SCT for multiple myeloma is a major predictor of survival in the era of novel agents. Bone Marrow Transplant. 2015;50(2):204‐208. PubMed
Kumar SK, Dingli D, Dispenzieri A, et al. Impact of additional cytoreduction following autologous SCT in multiple myeloma. Bone Marrow Transplant. 2008;42(4):259‐264. PubMed PMC
Venner CP, Connors JM, Sutherland HJ, et al. Novel agents improve survival of transplant patients with multiple myeloma including those with high‐risk disease defined by early relapse (<12 months). Leuk Lymphoma. 2011;52(1):34‐41. PubMed
Fernández de Larrea C, Jiménez R, Rosiñol L, et al. Pattern of relapse and progression after autologous SCT as upfront treatment for multiple myeloma. Bone Marrow Transplant. 2014;49(2):223‐227. PubMed
Lin P, Mahdavy M, Zhan F, Zhang HZ, Katz RL, Shaughnessy JD. Expression of PAX5 in CD20‐positive multiple myeloma assessed by immunohistochemistry and oligonucleotide microarray. Mod Pathol. 2004;17(10):1217‐1222. PubMed
Kuo YH, Gerstein RM, Castilla LH. Cbfbeta‐SMMHC impairs differentiation of common lymphoid progenitors and reveals an essential role for RUNX in early B‐cell development. Blood. 2008;111(3):1543‐1551. PubMed PMC
Lu X, Chu C‐S, Fang T, et al. MTA2/NuRD Regulates B Cell Development and Cooperates with OCA‐B in Controlling the Pre‐B to Immature B Cell Transition. Cell Rep. 2019;28(2):472‐485.e475. PubMed PMC
Hajek R, Okubote SA, Svachova H. Myeloma stem cell concepts, heterogeneity and plasticity of multiple myeloma. Br J Haematol. 2013;163(5):551‐564. PubMed
Garfall AL, Maus MV, Hwang W‐T, et al. Chimeric antigen receptor T cells against CD19 for multiple myeloma. N Engl J Med. 2015;373(11):1040‐1047. PubMed PMC
Pilarski LM, Jensen GS. Monoclonal circulating B cells in multiple myeloma. A continuously differentiating, possibly invasive, population as defined by expression of CD45 isoforms and adhesion molecules. Hematol Oncol Clin North Am. 1992;6(2):297‐322. PubMed
Rasmussen T, Jensen L, Honore L, Johnsen HE. Frequency and kinetics of polyclonal and clonal B cells in the peripheral blood of patients being treated for multiple myeloma. Blood. 2000;96(13):4357‐4359. PubMed
Yaccoby S. The phenotypic plasticity of myeloma plasma cells as expressed by dedifferentiation into an immature, resilient, and apoptosis‐resistant phenotype. Clin Cancer Res. 2005;11(21):7599‐7606. PubMed PMC
Fuhler GM, Baanstra M, Chesik D, et al. Bone marrow stromal cell interaction reduces syndecan‐1 expression and induces kinomic changes in myeloma cells. Exp Cell Res. 2010;316(11):1816‐1828. PubMed
Hideshima T, Mitsiades C, Ikeda H, et al. A proto‐oncogene BCL6 is up‐regulated in the bone marrow microenvironment in multiple myeloma cells. Blood. 2010;115(18):3772‐3775. PubMed PMC
Calame KL. Plasma cells: finding new light at the end of B cell development. Nat Immunol. 2001;2(12):1103‐1108. PubMed
Gu J‐L, Li J, Zhou Z‐H, et al. Differentiation induction enhances bortezomib efficacy and overcomes drug resistance in multiple myeloma. Biochem Biophys Res Commun. 2012;420(3):644‐650. PubMed
Jourdan M, Cren M, Schafer P, et al. Differential effects of lenalidomide during plasma cell differentiation. Oncotarget. 2016;7(19):28096‐28111. PubMed PMC
Leung‐Hagesteijn C, Erdmann N, Cheung G, et al. Xbp1s‐negative tumor B cells and pre‐plasmablasts mediate therapeutic proteasome inhibitor resistance in multiple myeloma. Cancer Cell. 2013;24(3):289‐304. PubMed PMC
Huang H, Wu D, Fu J, et al. All‐trans retinoic acid can intensify the growth inhibition and differentiation induction effect of rosiglitazone on multiple myeloma cells. Eur J Haematol. 2009;83(3):191‐202. PubMed
Cenci S, Mezghrani A, Cascio P, et al. Progressively impaired proteasomal capacity during terminal plasma cell differentiation. EMBO J. 2006;25(5):1104‐1113. PubMed PMC
Cascio P, Oliva L, Cerruti F, et al. Dampening Ab responses using proteasome inhibitors following in vivo B cell activation. Eur J Immunol. 2008;38(3):658‐667. PubMed
Neubert K, Meister S, Moser K, et al. The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus‐like disease from nephritis. Nat Med. 2008;14(7):748‐755. PubMed
ClinicalTrials.gov
NCT01564537