Ecological drivers of African swine fever virus persistence in wild boar populations: Insight for control
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection
Document type Journal Article
PubMed
32211160
PubMed Central
PMC7083705
DOI
10.1002/ece3.6100
PII: ECE36100
Knihovny.cz E-resources
- Keywords
- African swine fever, approximate Bayesian computation, carcass, environmental transmission, persistence, spatial model, transmission, wild boar,
- Publication type
- Journal Article MeSH
Environmental sources of infection can play a primary role in shaping epidemiological dynamics; however, the relative impact of environmental transmission on host-pathogen systems is rarely estimated. We developed and fit a spatially explicit model of African swine fever virus (ASFV) in wild boar to estimate what proportion of carcass-based transmission is contributing to the low-level persistence of ASFV in Eastern European wild boar. Our model was developed based on ecological insight and data from field studies of ASFV and wild boar in Eastern Poland. We predicted that carcass-based transmission would play a substantial role in persistence, especially in low-density host populations where contact rates are low. By fitting the model to outbreak data using approximate Bayesian computation, we inferred that between 53% and 66% of transmission events were carcass-based that is, transmitted through contact of a live host with a contaminated carcass. Model fitting and sensitivity analyses showed that the frequency of carcass-based transmission increased with decreasing host density, suggesting that management policies should emphasize the removal of carcasses and consider how reductions in host densities may drive carcass-based transmission. Sensitivity analyses also demonstrated that carcass-based transmission is necessary for the autonomous persistence of ASFV under realistic parameters. Autonomous persistence through direct transmission alone required high host densities; otherwise re-introduction of virus periodically was required for persistence when direct transmission probabilities were moderately high. We quantify the relative role of different persistence mechanisms for a low-prevalence disease using readily collected ecological data and viral surveillance data. Understanding how the frequency of different transmission mechanisms vary across host densities can help identify optimal management strategies across changing ecological conditions.
Mammal Research Institute Polish Academy of Sciences Białowieża Poland
Microbiology Immunology and Pathology Colorado State University Fort Collins CO USA
National Wildlife Research Center USDA APHIS Fort Collins CO USA
See more in PubMed
Allerson, M. W. , Cardpna, C. J. , & Torremorell, M. (2013). Indirect transmission of influenza a virus between pig populations under two different biosecurity settings. PLoS One, 8(6), e67293 10.1371/journal.pone.0067293 PubMed DOI PMC
Almberg, E. S. , Cross, P. C. , Johnson, C. J. , Heisey, D. M. , & Richards, B. J. (2011). Modeling routes of chronic wasting disease transmission: Environmental prion persistence promotes deer population decline and extinction. PLoS One, 6(5), e19896 10.1371/journal.pone.0019896 PubMed DOI PMC
Azman, A. S. , & Lessler, J. (2015). Reactive vaccination in the presence of disease hotspots. Proceedings of the Royal Society B‐Biological Sciences, 282(1798), 20141341 10.1098/rspb.2014.1341 PubMed DOI PMC
Barrett, R. H. (1978). The feral hog on the Dye Creek Ranch, California. Hilgardia, 46(9), 283–355. 10.3733/hilg.v46n09p283 DOI
Bielby, J. , Donnelly, C. A. , Pope, L. C. , Burke, T. , & Woodroffe, R. (2014). Badger responses to small‐scale culling may compromise targeted control of bovine tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 111(25), 9193–9198. 10.1073/pnas.1401503111 PubMed DOI PMC
Blome, S. , Gabriel, C. , Dietze, K. , Breithaupt, A. , & Beer, M. (2012). High virulence of African swine fever virus caucasus isolate in european wild boars of all ages. Emerging Infectious Diseases, 18(4), 10.3201/eid1804.111813 PubMed DOI PMC
Boadella, M. , Vicente, J. , Ruiz‐Fons, F. , de la Fuente, J. , & Gortázar, C. (2012). Effects of culling Eurasian wild boar on the prevalence of Mycobacterium bovis and Aujeszky's disease virus. Preventive Veterinary Medicine, 107(3–4), 214–221. 10.1016/j.prevetmed.2012.06.001 PubMed DOI
Bolzoni, L. , & De Leo, G. A. (2013). Unexpected consequences of culling on the eradication of wildlife diseases: The role of virulence evolution. American Naturalist, 181(3), 301–313. 10.1086/669154 PubMed DOI
Breban, R. (2013). Role of environmental persistence in pathogen transmission: A mathematical modeling approach. Journal of Mathematical Biology, 66(3), 535–546. 10.1007/s00285-012-0520-2 PubMed DOI PMC
Brown, V. R. , & Bevins, S. N. (2018). A review of African swine fever and the potential for introduction in to the United States and the possibility of subsequent establishment in feral swine and native ticks. Frontiers in Veterinary Science, 5(11), 1–18. 10.3389/fvets.2018.00011 PubMed DOI PMC
Chenais, E. , Ståhl, K. , Guberti, V. , & Depner, K. (2018). Identification of wild boar‐habitat epidemiologic cycle in African swine fever epizootic. Emerging Infectious Diseases, 24(4), 810–812. 10.3201/eid2404.172127 PubMed DOI PMC
Comte, S. , Umhang, G. , Raton, V. , Raoul, F. , Giraudoux, P. , Combes, B. , & Boué, F. (2017). Echinococcus multilocularis management by fox culling: An inappropriate paradigm. Preventive Veterinary Medicine, 147, 178–185. 10.1016/j.prevetmed.2017.09.010 PubMed DOI
Costard, S. , Mur, L. , Lubroth, J. , Sanchez‐Vizcaino, J. M. , & Pfeiffer, D. U. (2013). Epidemiology of African swine fever virus. Virus Research, 173, 191–197. 10.1016/j.virusres.2012.10.030 PubMed DOI
Costard, S. , Wieland, B. , de Glanville, W. , Jori, F. , Rowlands, R. , Vosloo, W. , … Dixon, L. K. (2009). African swine fever: How can global spread be prevented? Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1530), 2683–2696. 10.1098/rstb.2009.0098 PubMed DOI PMC
Donnelly, C. A. , Woodroffe, R. , Cox, D. R. , Bourne, F. J. , Cheeseman, C. L. , Clifton‐Hadley, R. S. , … Morrison, W. I. (2006). Positive and negative effects of widespread badger culling on tuberculosis in cattle. Nature, 439(7078), 843–846. 10.1038/nature04454 PubMed DOI
EFSA ; Depner, K. , Gortazar, C. , Guberti, V. , Masiulis, M. , More, S. , Oļševskis, E. … Cortiñas Abrahantes, J. (2017). Epidemiological analyses of African swine fever in the Baltic States and Poland: (Update September 2016–September 2017). EFSA Journal, 15(11), e05068. PubMed PMC
Frant, M. , Woźniakowski, G. , & Pejsak, Z. (2017). African swine fever (ASF) and ticks. No risk of tick‐mediated ASF spread in Poland and Baltic states. Journal of Veterinary Research, 61(4), 375–380. 10.1515/jvetres-2017-0055 PubMed DOI PMC
Fruziński, B. (1995). Situation of wild boar populations in western Poland. IBEX Journal of Mountain Ecology, 3, 186–187.
Gabor, T. M. , Hellgren, E. C. , Van Den Bussche, R. A. , & Silvy, N. J. (1999). Demography, sociospatial behaviour and genetics of feral pigs (Sus scrofa) in a semi‐arid environment. Journal of Zoology, 247(3), 311–322. 10.1111/j.1469-7998.1999.tb00994.x DOI
Gallardo, C. , Soler, A. , Nieto, R. , Cano, C. , Pelayo, V. , Sánchez, M. A. , … Arias, M. (2017). Experimental infection of domestic pigs with African swine fever virus Lithuania 2014 genotype II field isolate. Transboundary and Emerging Diseases, 64(1), 300–304. 10.1111/tbed.12346 PubMed DOI
Gethöffer, F. , Sodeikat, G. , & Pohlmeyer, K. (2007). Reproductive parameters of wild boar (Sus scrofa) in three different parts of Germany. European Journal of Wildlife Research, 53(4), 287–297. 10.1007/s10344-007-0097-z DOI
Guinat, C. , Vergne, T. , Jurado‐Diaz, C. , Sánchez‐vicaíno, J. M. , Dixon, L. , & Pfeiffer, D. U. (2017). Effectiveness and practicality of control strategies for African swine fever: What do we really know? Veterinary Record, 180(4), 97 10.1136/vr.103992 PubMed DOI PMC
Harrison, A. , Newey, S. , Gilbert, L. , Haydon, D. T. , & Thirgood, S. (2010). Culling wildlife hosts to control disease: Mountain hares, red grouse and louping ill virus. Journal of Applied Ecology, 47(4), 926–930 10.1111/j.1365-2664.2010.01834.x DOI
Henry, V. G. (1968). Length of estrous cycle and gestation in European wild hogs. Journal of Wildlife Management, 32(2), 406 10.2307/3798986 DOI
Ježek, M. , Štípek, K. , Kušta, T. , Červený, J. , & Vícha, J. (2011). Reproductive and morphometric characteristics of wild boar (Sus scrofa) in the Czech Republic. Journal of Forest Science, 57(7), 285–292. 10.17221/102/2010-JFS DOI
Jezierski, W. (1977). Longevity and mortality rate in a population of wild boar. Acta Theriologica, 22(24), 337–348. 10.4098/AT.arch.77-31 DOI
Kaminski, G. , Brandt, S. , Baubet, E. , & Baudoin, C. (2005). Life‐history patterns in female wild boars (Sus scrofa): Mother‐daughter postweaning associations. Canadian Journal of Zoology, 83(3), 474–480. 10.1139/z05-019 DOI
Kay, S. L. , Fischer, J. W. , Monaghan, A. J. , Beasley, J. C. , Boughton, R. , Campbell, T. A. , … Pepin, K. M. (2017). Quantifying drivers of wild pig movement across multiple spatial and temporal scales. Movement Ecology, 5, 14 10.1186/s40462-017-0105-1 PubMed DOI PMC
Keuling, O. , Baubet, E. , Duscher, A. , Ebert, C. , Fischer, C. , Monaco, A. , … Thurfjell, H. (2013). Mortality rates of wild boar Sus scrofa L. in central Europe. European Journal of Wildlife Research, 59(6), 805–814. 10.1007/s10344-013-0733-8 DOI
Keuling, O. , Lauterbach, K. , Stier, N. , & Roth, M. (2010). Hunter feedback of individually marked wild boar Sus scrofa L.: Dispersal and efficiency of hunting in northeastern Germany. European Journal of Wildlife Research, 56(2), 159–167. 10.1007/s10344-009-0296-x DOI
Kraay, A. N. M. , Brouwer, A. F. , Lin, N. , Collender, P. A. , Remais, J. V. , & Eisenberg, J. N. S. (2018). Modeling environmentally mediated rotavirus transmission: The role of temperature and hydrologic factors. Proceedings of the National Academy of Sciences of the United States of America, 115(12), e2782–e2790. 10.1073/pnas.1719579115 PubMed DOI PMC
Lange, M. , & Thulke, H. H. (2017). Elucidating transmission parameters of African swine fever through wild boar carcasses by combining spatio‐temporal notification data and agent‐based modelling. Stochastic Environmental Research and Risk Assessment, 31(2), 379–391. 10.1007/s00477-016-1358-8 DOI
Loehle, C. (1995). Social barriers to pathogen transmission in wild animal populations. Ecology, 76(2), 326–335. 10.2307/1941192 DOI
Manjerovic, M. B. , Green, M. L. , Mateus‐Pinilla, N. , & Novakofski, J. (2014). The importance of localized culling in stabilizing chronic wasting disease prevalence in white‐tailed deer populations. Preventive Veterinary Medicine, 113(1), 139–145. 10.1016/j.prevetmed.2013.09.011 PubMed DOI
Massei, G. , Kindberg, J. , Licoppe, A. , Gačić, D. , Šprem, N. , Kamler, J. , … Náhlik, A. (2015). Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Management Science, 71, 492–500. 10.1002/ps.3965 PubMed DOI
Mateus‐Pinilla, N. , Weng, H. , Ruiz, M. O. , Shelton, P. , & Novakofski, J. (2013). Evaluation of a wild white‐tailed deer population management program for controlling chronic wasting disease in Illinois, 2003–2008. Preventive Veterinary Medicine, 110(3–4), 541–548. 10.1016/j.prevetmed.2013.03.002 PubMed DOI
Melis, C. , Szafrańska, P. A. , Jędrzejewska, B. , & Bartoń, K. (2006). Biogeographical variation in the population density of wild boar (Sus scrofa) in western Eurasia. Journal of Biogeography, 33(5), 803–811 10.1111/j.1365 DOI
Merkle, J. A. , Cross, P. C. , Scurlock, M. , Cole, E. K. , Courtemanch, A. B. , Dewey, S. R. , & Kauffman, M. J. (2018). Linking spring phenology with mechanistic models of host movement to predict disease transmission risk. Journal of Applied Ecology, 55(2), 810–819 10.1111/1365-2664.13022 DOI
Morelle, K. , Jezek, M. , Licoppe, A. , & Podgorski, T. (2019). Deathbed choice by ASF‐infected wild boar can help find carcasses. Transboundary and Emerging Diseases, 66(5), 1821–1826. 10.1111/tbed.13267 PubMed DOI
Oļševskis, E. , Guberti, V. , Seržants, M. , Westergaard, J. , Gallardo, C. , Rodze, I. , & Depner, K. (2016). African swine fever virus introduction into the EU in 2014: Experience of Latvia. Research in Veterinary Science, 105, 28–30. 10.1016/j.rvsc.2016.01.006 PubMed DOI
Park, A. W. (2012). Infectious disease in animal metapopulations: The importance of environmental transmission. Ecology and Evolution, 2(7), 1398–1407. 10.1002/ece3.257 PubMed DOI PMC
Pepin, K. M. , Davis, A. J. , Beasley, J. , Boughton, R. , Campbell, T. , Cooper, S. M. , … VerCauteren, K. C. (2016). Contact heterogeneities in feral swine: Implications for disease management and future research. Ecosphere, 7(3), e01230 10.1002/ecs2.1230 DOI
Pepin, K. M. , Davis, A. J. , Cunningham, F. L. , VerCauteren, K. C. , & Eckery, D. E. (2017). Potential effects of incorporating fertility control into typical culling regimes in wild pig populations. PLoS One, 12(8), e0183441 10.1371/journal.pone.0183441 PubMed DOI PMC
Pepin, K. M. , & VerCauteren, K. C. (2016). Disease‐emergence dynamics and control in a socially‐structured wildlife species. Scientific Reports, 6(1), 25150 10.1038/srep25150 PubMed DOI PMC
Podgórski, T. , Apollonio, M. , & Keuling, O. (2018). Contact rates in wild boar populations: Implications for disease transmission. Journal of Wildlife Management, 82(6), 1210–1218. 10.1002/jwmg.21480 DOI
Podgórski, T. , Baś, G. , Jędrzejewska, B. , Sönnichsen, L. , Śnieżko, S. , Jędrzejewski, W. , & Okarma, H. (2013). Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: Primeval forest and metropolitan area. Journal of Mammalogy, 94(1), 109–119.
Podgórski, T. , Lusseau, D. , Scandura, M. , Sonnichsen, L. , & Jędrzejewska, B. (2014). Long‐lasting, kin‐directed female interactions in a spatially structured wild boar social network. PLoS One, 9, e99875 10.1371/journal.pone.0099875 PubMed DOI PMC
Podgórski, T. , Scandura, M. , & Jędrzejewska, B. (2014). Next of kin next door – Philopatry and socio‐genetic population structure in wild boar. Journal of Zoology, 294(3), 190–197. 10.1111/jzo.12167 DOI
Poteaux, C. , Baubet, E. , Kaminski, G. , Brandt, S. , Dobson, F. S. , & Baudoin, C. (2009). Socio‐genetic structure and mating system of a wild boar population. Journal of Zoology, 278(2), 116–125. 10.1111/j.1469-7998.2009.00553.x DOI
Prévot, C. , & Licoppe, A. (2013). Comparing red deer (Cervus elaphus L.) and wild boar (Sus scrofa L.) dispersal patterns in southern Belgium. European Journal of Wildlife Research, 59(6), 795–803. 10.1007/s10344-013-0732-9 DOI
Probst, C. , Globig, A. , Knoll, B. , Conraths, F. J. , & Depner, K. (2017). Behaviour of free ranging wild boar towards their dead fellows: Potential implications for the transmission of African swine fever. Royal Society Open Science, 4, 170054 10.1098/rsos.170054 PubMed DOI PMC
Rosell, C. , Navàs, F. , & Romero, S. (2012). Reproduction of wild boar in a cropland and coastal wetland area: Implications for management. Animal Biodiversity and Conservation, 35(2), 209–217.
Sánchez‐Vizcaíno, J. M. , Mur, L. , Gomez‐Villamandos, J. C. , & Carrasco, L. (2015). An update on the epidemiology and pathology of African swine fever. Journal of Comparative Pathology, 152(1), 9–21. PubMed
Sauvage, F. , Langlais, M. , Yoccoz, N. G. , & Pontier, D. (2003). Modelling hantavirus in fluctuating populations of bank voles: The role of indirect transmission on virus persistence. Journal of Animal Ecology, 72(1), 1–13. 10.1046/j.1365-2656.2003.00675.x DOI
Scillitani, L. , Monaco, A. , & Toso, S. (2010). Do intensive drive hunts affect wild boar (Sus scrofa) spatial behaviour in Italy? Some evidences and management implications. European Journal of Wildlife Research, 56, 307–318. 10.1007/s10344-009-0314-z DOI
Selva, N. , Jędrzejewska, B. , Jędrzejewska, W. , & Warjrak, A. (2005). Factors affecting carcass use by a guild of scavengers in European temperate woodland. Canadian Journal of Zoology, 83(12), 1590–1601. 10.1139/z05-158 DOI
Siembieda, J. L. , Kock, R. A. , McCracken, T. A. , & Newman, S. H. (2011). The role of wildlife in transboundary animal diseases. Animal Health Research Reviews, 12(1), 95–111. 10.1017/s1466252311000041 PubMed DOI
Śmietanka, K. , Woźniakowski, G. , Kozak, E. , Niemczuk, K. , Frączyk, M. , Bocian, L. , … Pejsak, Z. (2016). African swine fever epidemic, Poland, 2014–2015. Emerging Infectious Diseases, 22(7), 1201–1207. 10.3201/eid2207.151708 PubMed DOI PMC
Stone, L. , Olinky, R. , & Hupert, A. (2007). Seasonal dynamics of recurrent epidemics. Nature, 446(7135), 533–536. PubMed
Tardy, O. , Massé, A. , Pelletier, F. , & Fortin, D. (2018). Interplay between contact risk, conspecific density, and landscape connectivity: An individual‐based modeling framework. Ecological Modelling, 373, 25–38. 10.1016/j.ecolmodel.2018.02.003 DOI
Towers, S. , Chen, J. , Cruz, C. , Melendez, J. , Rodriguez, J. , Salinas, A. , … Kang, Y. (2018). Quantifying the relative effects of environmental and direct transmission of norovirus. Royal Society Open Science, 5(3), 170602 10.1098/rsos.170602 PubMed DOI PMC
Truvé, J. , & Lemel, J. (2003). Timing and distance of natal dispersal for wild boar Sus scrofa in Sweden. Wildlife Biology, 9(4), 51–58.
Turner, W. C. , Kausrud, K. L. , Krishnappa, Y. S. , Cromsigt, J. P. G. M. , Ganz, H. H. , Mapaure, I. , … Stenseth, N. C. (2014). Fatal attraction: Vegetation responses to nutrient inputs attract herbivores to infectious anthrax carcass sites. Proceedings of the Royal Society B‐Biological Sciences, 281(1795), 20141785 10.1098/rspb.2014.1785 PubMed DOI PMC
Wieland, B. , Dhollander, S. , Salman, M. , & Koenen, F. (2011). Qualitative risk assessment in a data‐scarce environment: A model to assess the impact of control measures on spread of African swine fever. Preventive Veterinary Medicine, 99(1), 4–14. 10.1016/j.prevetmed.2011.01.001 PubMed DOI
Wille, M. , McBurney, S. , Robertson, G. J. , Wilhelm, S. I. , Blehert, D. S. , Soos, C. , … Whitney, H. (2016). A pelagic outbreak of avian cholera in North American gulls: Scavenging as a primary mechanism for transmission? Journal of Wildlife Diseases, 52(4), 793–802. 10.7589/2015-12-342 PubMed DOI
Woźniakowski, G. , Kozak, E. , Kowalczyk, A. , Łyjak, M. , Pomorska‐Mól, M. , Niemczuk, K. , & Pejsak, Z. (2016). Current status of African swine fever virus in a population of wild boar in eastern Poland (2014–2015). Archives of Virology, 161(1), 189–195. 10.1007/s00705-015-2650-5 PubMed DOI PMC
Temperature and pH dynamics during carcass decomposition and implications for disease management
Risk of African swine fever virus transmission among wild boar and domestic pigs in Poland
Social structure defines spatial transmission of African swine fever in wild boar
Dryad
10.5061/dryad.79cnp5hrv