Social structure defines spatial transmission of African swine fever in wild boar
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
33468025
PubMed Central
PMC7879769
DOI
10.1098/rsif.2020.0761
Knihovny.cz E-resources
- Keywords
- African swine fever, effective reproduction number, social structure, spatial transmission kernel, surveillance, wild boar,
- MeSH
- African Swine Fever * epidemiology MeSH
- Uncertainty MeSH
- Swine MeSH
- Sus scrofa MeSH
- African Swine Fever Virus * MeSH
- Basic Reproduction Number MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
The spatial spread of infectious disease is determined by spatial and social processes such as animal space use and family group structure. Yet, the impacts of social processes on spatial spread remain poorly understood and estimates of spatial transmission kernels (STKs) often exclude social structure. Understanding the impacts of social structure on STKs is important for obtaining robust inferences for policy decisions and optimizing response plans. We fit spatially explicit transmission models with different assumptions about contact structure to African swine fever virus surveillance data from eastern Poland from 2014 to 2015 and evaluated how social structure affected inference of STKs and spatial spread. The model with social structure provided better inference of spatial spread, predicted that approximately 80% of transmission events occurred within family groups, and that transmission was weakly female-biased (other models predicted weakly male-biased transmission). In all models, most transmission events were within 1.5 km, with some rare events at longer distances. Effective reproductive numbers were between 1.1 and 2.5 (maximum values between 4 and 8). Social structure can modify spatial transmission dynamics. Accounting for this additional contact heterogeneity in spatial transmission models could provide more robust inferences of STKs for policy decisions, identify best control targets and improve transparency in model uncertainty.
See more in PubMed
Sah P, Mann J, Bansal S, Farine D. 2018. Disease implications of animal social network structure: a synthesis across social systems. J. Anim. Ecol. 87, 546–558. (10.1111/1365-2656.12786) PubMed DOI
Riley S 2007. Large-scale spatial-transmission models of infectious disease. Science 316, 1298–1301. (10.1126/science.1134695) PubMed DOI
Dougherty ER, Seidel DP, Carlson CJ, Spiegel O, Getz WM, Lafferty K. 2018. Going through the motions: incorporating movement analyses into disease research. Ecol. Lett. 21, 588–604. (10.1111/ele.12917) PubMed DOI
Emch M, Root ED, Giebultowicz S, Ali M, Perez-Heydrich C, Yunus M. et al. 2012. Integration of spatial and social network analysis in disease transmission studies. Ann. Assoc. Am. Geogr. 102, 1004–1015. (10.1080/00045608.2012.671129) PubMed DOI PMC
Arthur RF, Gurley ES, Salje H, Bloomfield LSP, Jones JH. 2017. Contact structure, mobility, environmental impact and behaviour: the importance of social forces to infectious disease dynamics and disease ecology. Phil. Trans. R. Soc. B 372, 20160454 (10.1098/rstb.2016.0454) PubMed DOI PMC
Woodroffe R, et al. 2009. Social group size affects Mycobacterium bovis infection in European badgers (Meles meles). J. Anim. Ecol. 78, 818–827. (10.1111/j.1365-2656.2009.01545.x) PubMed DOI
McClure KM, Gilbert AT, Chipman RB, Rees EE, Pepin KM, Hoye B. 2020. Variation in host home range size decreases rabies vaccination effectiveness by increasing the spatial spread of rabies virus. J. Anim. Ecol. 89, 1375–1386. (10.1111/1365-2656.13176) PubMed DOI PMC
Habib TJ, Merrill EH, Pybus MJ, Coltman DW. 2011. Modelling landscape effects on density–contact rate relationships of deer in eastern Alberta: implications for chronic wasting disease. Ecol. Modell. 222, 2722–2732. (10.1016/j.ecolmodel.2011.05.007) DOI
Nunn CL, Jordán F, McCabe CM, Verdolin JL, Fewell JH. 2015. Infectious disease and group size: more than just a numbers game. Phil. Trans. R. Soc. B 370, 20140111 (10.1098/rstb.2014.0111) PubMed DOI PMC
Daviews C, Ayres JM, Dye C, Deane LM. 1991. Malaria infection rate of Amazonian primates increases with body weight and group size. Funct. Ecol. 5, 655–662. (10.2307/2389485) DOI
Ezenwa VO 2004. Host social behavior and parasitic infection: a multifactorial approach. Behav. Ecol. 15, 446–454. (10.1093/beheco/arh028) DOI
Rosengaus RB, Maxmen AB, Coates LE, Traniello JFA. 1998. Disease resistance: a benefit of sociality in the dampwood termite Zootermopsis angusticollis (Isoptera: Termopsidae). Behav. Ecol. Sociobiol. 44, 125–134. (10.1007/s002650050523) DOI
Benincà E, Hagenaars T, Boender GJ, van de Kassteele J, van Boven M, Ferrari M. 2020. Trade-off between local transmission and long-range dispersal drives infectious disease outbreak size in spatially structured populations. PLoS Comput. Biol. 16, e1008009 (10.1371/journal.pcbi.1008009) PubMed DOI PMC
Boender GJ, Hagenaars TJ, Bouma A, Nodelijk G, Elbers ARW, de Jong MCM, van Boven M. 2007. Risk maps for the spread of highly pathogenic avian influenza in poultry. PLoS Comput. Biol. 3, e71 (10.1371/journal.pcbi.0030071) PubMed DOI PMC
Boender GJ, van Roermund HJW, de Jong MCM, Hagenaars TJ. 2010. Transmission risks and control of foot-and-mouth disease in The Netherlands: spatial patterns. Epidemics 2, 36–47. (10.1016/j.epidem.2010.03.001) PubMed DOI
Gubbins S, Stegeman A, Klement E, Pite L, Broglia A, Abrahantes JC. 2020. Inferences about the transmission of lumpy skin disease virus between herds from outbreaks in Albania in 2016. Prev. Vet. Med. 181, 104602 (10.1016/j.prevetmed.2018.12.008) PubMed DOI PMC
Craft ME 2015. Infectious disease transmission and contact networks in wildlife and livestock. Phil. Trans. R. Soc. B 370, 20140107 (10.1098/rstb.2014.0107) PubMed DOI PMC
Salje H, Cummings DA, Lessler J. 2016. Estimating infectious disease transmission distances using the overall distribution of cases. Epidemics 17, 10–18. (10.1016/j.epidem.2016.10.001) PubMed DOI PMC
Ferguson NM, Donnelly CA, Anderson RM. 2001. The foot-and-mouth epidemic in Great Britain: pattern of spread and impact of interventions. Science 292, 1155–1160. (10.1126/science.1061020) PubMed DOI
Ferguson NM, Donnelly CA, Anderson RM. 2001. Transmission intensity and impact of control policies on the foot and mouth epidemic in Great Britain. Nature 413, 542–548. (10.1038/35097116) PubMed DOI
Keeling MJ, et al. 2001. Dynamics of the 2001 UK foot and mouth epidemic: stochastic dispersal in a heterogeneous landscape. Science 294, 813–817. (10.1126/science.1065973) PubMed DOI
Woolhouse M 2011. How to make predictions about future infectious disease risks. Phil. Trans. R. Soc. B 366, 2045–2054. (10.1098/rstb.2010.0387) PubMed DOI PMC
Rees EE, Pond BA, Tinline RR, Bélanger D, McCallum H. 2013. Modelling the effect of landscape heterogeneity on the efficacy of vaccination for wildlife infectious disease control. J. Appl. Ecol. 50, 881–891. (10.1111/1365-2664.12101) DOI
Shirley MDF, Rushton SP, Smith GC, South AB, Lurz PWW. 2003. Investigating the spatial dynamics of bovine tuberculosis in badger populations: evaluating an individual-based simulation model. Ecol. Modell. 167, 139–157. (10.1016/S0304-3800(03)00167-4) DOI
Willem L, Verelst F, Bilcke J, Hens N, Beutels P. 2017. Lessons from a decade of individual-based models for infectious disease transmission: a systematic review (2006–2015). BMC Infect. Dis. 17, 612 (10.1186/s12879-017-2699-8) PubMed DOI PMC
Pepin KM, Golnar AJ, Abdo Z, Podgórski T. 2020. Ecological drivers of African swine fever virus persistence in wild boar populations: insight for control. Ecol. Evol. 10, 2846–2859. (10.1002/ece3.6100) PubMed DOI PMC
Pepin KM, VerCauteren KC. 2016. Disease-emergence dynamics and control in a socially-structured wildlife species. Sci. Rep. 6, 25150 (10.1038/srep25150) PubMed DOI PMC
Pepin KM, et al. 2016. Contact heterogeneities in feral swine: implications for disease management and future research. Ecosphere 7, e01230 (10.1002/ecs2.1230) DOI
Podgórski T, Apollonio M, Keuling O. 2018. Contact rates in wild boar populations: implications for disease transmission. J. Wildl. Manage. 82, 1210–1218. (10.1002/jwmg.21480) DOI
Arias M, Jurado C, Gallardo C, Fernández-Pinero J, Sánchez-Vizcaíno JM. 2018. Gaps in African swine fever: analysis and priorities. Transbound. Emerg. Dis. 65, 235–247. (10.1111/tbed.12695) PubMed DOI
Pepin KM, Davis AJ, Streicker DG, Fischer JW, VerCauteren KC, Gilbert AT, Recuenco S. 2017. Predicting spatial spread of rabies in skunk populations using surveillance data reported by the public. PLoS Negl. Trop. Dis. 11, e0005822 (10.1371/journal.pntd.0005822) PubMed DOI PMC
Chipperfield JD, Holland EP, Dytham C, Thomas CD, Hovestadt T. 2011. On the approximation of continuous dispersal kernels in discrete-space models. Methods Ecol. Evol. 2, 668–681. (10.1111/j.2041-210X.2011.00117.x) DOI
Ypma RJF, Bataille AMA, Stegeman A, Koch G, Wallinga J, van Ballegooijen WM. 2012. Unravelling transmission trees of infectious diseases by combining genetic and epidemiological data. Proc. R. Soc. B 279, 444–450. (10.1098/rspb.2011.0913) PubMed DOI PMC
Kamath PL, et al. 2016. Genomics reveals historic and contemporary transmission dynamics of a bacterial disease among wildlife and livestock. Nat. Commun. 7, 11448 (10.1038/ncomms11448) PubMed DOI PMC
Price SJ, Garner TWJ, Cunningham AA, Langton TES, Nichols RA. 2016. Reconstructing the emergence of a lethal infectious disease of wildlife supports a key role for spread through translocations by humans. Proc. R. Soc. B 283, 20160952 (10.1098/rspb.2016.0952) PubMed DOI PMC
Frant M, Lyjak M, Bocian L, Barszcz A, Niemczuk K, Wozniakowski G. 2020. African swine fever virus (ASFV) in Poland: prevalence in a wild boar population (2017–2018). Vet. Med. 65, 143–158. (10.17221/105/2019-VETMED) DOI
Mazur-Panasiuk N, Woźniakowski G. 2019. The unique genetic variation within the O174 L gene of Polish strains of African swine fever virus facilitates tracking virus origin. Arch. Virol. 164, 1667–1672. (10.1007/s00705-019-04224-x) PubMed DOI PMC
Chapman DAG, Darby AC, Da Silva M, Upton C, Radford AD, Dixon LK. 2011. Genomic analysis of highly virulent Georgia 2007/1 isolate of African swine fever virus. Emerg. Infect. Dis. 17, 599–605. (10.3201/eid1704.101283) PubMed DOI PMC
European Food Safety Authority et al. 2020. Epidemiological analyses of African swine fever in the European Union (November 2018 to October 2019). EFSA J. 18, e05996. PubMed PMC
Guinat C, Gogin A, Blome S, Keil G, Pollin R, Pfeiffer DU, Dixon L. 2016. Transmission routes of African swine fever virus to domestic pigs: current knowledge and future research directions. Vet. Rec. 178, 262 (10.1136/vr.103593) PubMed DOI PMC
Śmietanka K, Woźniakowski G, Kozak E, Niemczuk K, Frączyk M, Bocian Ł, Kowalczyk A, Pejsak Z. 2016. African swine fever epidemic, Poland, 2014–2015. Emerg. Infect. Dis. 22, 1201–1207. (10.3201/eid2207.151708) PubMed DOI PMC
Woźniakowski G, Kozak E, Kowalczyk A, Łyjak M, Pomorska-Mól M, Niemczuk K, Pejsak Z. 2016. Current status of African swine fever virus in a population of wild boar in eastern Poland (2014–2015). Arch. Virol. 161, 189–195. (10.1007/s00705-015-2650-5) PubMed DOI PMC
Borowik T, Cornulier T, Jędrzejewska B. 2013. Environmental factors shaping ungulate abundances in Poland. Acta Theriol. 58, 403–413. (10.1007/s13364-013-0153-x) PubMed DOI PMC
Śmietanka K, Woźniakowski G, Kozak E, Niemczuk K, Frączyk M, Bocian L, Kowalczyk A, Pejsak Z. 2016. African swine fever epidemic, Poland, 2014–2015. Emerg. Infect. Dis. 22, 1201–1207. (10.3201/eid2207.151708) PubMed DOI PMC
Rosell C, Navas F, Romero S. 2012. Reproduction of wild boar in a cropland and coastal wetland area: implications for management. Anim. Biodivers. Conserv. 35, 209–217. (10.32800/abc.2012.35.0209) DOI
Selva N, Jędrzejewska B, Jędrzejewski W, Wajrak A. 2005. Factors affecting carcass use by a guild of scavengers in European temperate woodland. Can. J. Zool. 83, 1590–1601. (10.1139/z05-158) DOI
Ježek M, Štípek K, Kušta T, Červený J, Vícha J. 2011. Reproductive and morphometric characteristics of wild boar (Sus scrofa) in the Czech Republic. J. Forest Sci. 57, 285–292. (10.17221/102/2010-JFS) DOI
Bieber C, Ruf T. 2005. Population dynamics in wild boar Sus scrofa: ecology, elasticity of growth rate and implications for the management of pulsed resource consumers. J. Appl. Ecol. 42, 1203–1213. (10.1111/j.1365-2664.2005.01094.x) DOI
Keeling MJ, Rohani P. 2008. Modeling infectious diseases in humans and animals. Princeton, NJ: Princeton University Press.
Sjöberg M, Albrectsen B, Hjältén J. 2000. Truncated power laws: a tool for understanding aggregation patterns in animals? Ecol. Lett. 3, 90–94. (10.1046/j.1461-0248.2000.00113.x) DOI
Massei G, et al. 2015. Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Manag. Sci. 71, 492–500. (10.1002/ps.3965) PubMed DOI
Matuszewski S, Konwerski S, Frątczak K, Szafałowicz M. 2014. Effect of body mass and clothing on decomposition of pig carcasses. Int. J. Legal Med. 128, 1039–1048. (10.1007/s00414-014-0965-5) PubMed DOI PMC
Podgórski T, Baś G, Jędrzejewska B, Sönnichsen L, Śnieżko S, Jędrzejewski W, Okarma H. 2013. Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: primeval forest and metropolitan area. J. Mammal. 94, 109–119. (10.1644/12-MAMM-A-038.1) DOI
Kay SL, et al. 2017. Quantifying drivers of wild pig movement across multiple spatial and temporal scales. Mov. Ecol. 5, 14 (10.1186/s40462-017-0105-1) PubMed DOI PMC
Shea K, Tildesley MJ, Runge MC, Fonnesbeck CJ, Ferrari MJ, Dobson AP. 2014. Adaptive management and the value of information: learning via intervention in epidemiology. PLoS Biol. 12, e1001970 (10.1371/journal.pbio.1001970) PubMed DOI PMC
Gudelj I, White KAJ. 2004. Spatial heterogeneity, social structure and disease dynamics of animal populations. Theor. Popul. Biol. 66, 139–149. (10.1016/j.tpb.2004.04.003) PubMed DOI
Craft ME, Volz E, Packer C, Meyers LA. 2011. Disease transmission in territorial populations: the small-world network of Serengeti lions. J. R. Soc. Interface 8, 776–786. (10.1098/rsif.2010.0511) PubMed DOI PMC
Donnelly CA, et al. 2006. Positive and negative effects of widespread badger culling on tuberculosis in cattle. Nature 439, 843–846. (10.1038/nature04454) PubMed DOI
McDonald JL, Robertson A, Silk MJ. 2018. Wildlife disease ecology from the individual to the population: insights from a long-term study of a naturally infected European badger population. J. Anim. Ecol. 87, 101–112. (10.1111/1365-2656.12743) PubMed DOI
Firestone SM, Christley RM, Ward MP, Dhand NK. 2012. Adding the spatial dimension to the social network analysis of an epidemic: investigation of the 2007 outbreak of equine influenza in Australia. Prev. Vet. Med. 106, 123–135. (10.1016/j.prevetmed.2012.01.020) PubMed DOI PMC
Manlove K, Aiello C, Sah P, Cummins B, Hudson PJ, Cross PC.. 2018. The ecology of movement and behaviour: a saturated tripartite network for describing animal contacts. Proc. R. Soc. B 285, 20180670 (10.1098/rspb.2018.0670) PubMed DOI PMC
Riley S, Eames K, Isham V, Mollison D, Trapman P. 2015. Five challenges for spatial epidemic models. Epidemics 10, 68–71. (10.1016/j.epidem.2014.07.001) PubMed DOI PMC
Langrock R, et al. 2014. Modelling group dynamic animal movement. Methods Ecol. Evol. 5, 190–199. (10.1111/2041-210X.12155) DOI
Spiegel O, Leu ST, Sih A, Bull CM, Münkemüller T. 2016. Socially interacting or indifferent neighbours? Randomization of movement paths to tease apart social preference and spatial constraints. Methods Ecol. Evol. 7, 971–979. (10.1111/2041-210X.12553) DOI
Belsare AV, Gompper ME, Keller B, Sumners J, Hansen L, Millspaugh JJ. 2020. An agent-based framework for improving wildlife disease surveillance: a case study of chronic wasting disease in Missouri white-tailed deer. Ecol. Modell. 417, 108919 (10.1016/j.ecolmodel.2019.108919) PubMed DOI PMC
Merli E, Grignolio S, Marcon A, Apollonio M. 2017. Wild boar under fire: the effect of spatial behaviour, habitat use and social class on hunting mortality. J. Zool. 303, 155–164. (10.1111/jzo.12471) DOI
Campbell TA, Long DB, Leland BR. 2010. Feral swine behavior relative to aerial gunning in southern Texas. J. Wildl. Manage. 74, 337–341. (10.2193/2009-131) DOI
Sodeikat G, Pohlmeyer K. 2002. Temporary home range modifications of wild boar family groups (Sus scrofa L.) caused by drive hunts in Lower Saxony (Germany). Z. Jagdwiss. 48, 161–166.
Chenais E, Depner K, Guberti V, Dietze K, Viltrop A, Ståhl K. 2019. Epidemiological considerations on African swine fever in Europe 2014–2018. Porcine Health Manage. 5, 1–6. (10.1186/s40813-018-0109-2) PubMed DOI PMC
European Food Safety Authority et al. 2017. Epidemiological analyses of African swine fever in the Baltic States and Poland (update September 2016–September 2017). EFSA J. 15, e05068. PubMed PMC
Pautienius A, et al. 2018. Prevalence and spatiotemporal distribution of African swine fever in Lithuania, 2014–2017. Virol. J. 15, 177 (10.1186/s12985-018-1090-8) PubMed DOI PMC
Pejsak Z, et al. 2018. Four years of African swine fever in Poland. New insights into epidemiology and prognosis of future disease spread. Pol. J. Vet. Sci. 21, 835–841. PubMed
Ståhl K, Sternberg-Lewerin S, Blome S, Viltrop A, Penrith M-L, Chenais E. 2019. Lack of evidence for long term carriers of African swine fever virus—a systematic review. Virus Res. 272, 197725 (10.1016/j.virusres.2019.197725) PubMed DOI
O'Neill X, White A, Ruiz-Fons F, Gortázar C. 2020. Modelling the transmission and persistence of African swine fever in wild boar in contrasting European scenarios. Sci. Rep. 10, 5895 (10.1038/s41598-020-62736-y) PubMed DOI PMC
Probst C, Gethmann J, Amler S, Globig A, Knoll B, Conraths FJ. 2019. The potential role of scavengers in spreading African swine fever among wild boar. Sci. Rep. 9, 11450 (10.1038/s41598-019-47623-5) PubMed DOI PMC
Davies K, Goatley LC, Guinat C, Netherton CL, Gubbins S, Dixon LK, Reis AL. 2017. Survival of African swine fever virus in excretions from pigs experimentally infected with the Georgia 2007/1 isolate. Transbound. Emerg. Dis. 64, 425–431. (10.1111/tbed.12381) PubMed DOI PMC
European Food Safety Authority et al. 2018. Epidemiological analyses of African swine fever in the European Union (November 2017 until November 2018). EFSA J. 16, e05494. PubMed PMC
Iglesias I, Muñoz MJ, Montes F, Perez A, Gogin A, Kolbasov D, de la Torre A. 2016. Reproductive ratio for the local spread of African swine fever in wild boars in the Russian Federation. Transbound. Emerg. Dis. 63, e237–e245. (10.1111/tbed.12337) PubMed DOI
Lange M, Guberti V, Thulke HH. 2018. Understanding ASF spread and emergency control concepts in wild boar populations using individual-based modelling and spatio-temporal surveillance data. EFSA Support. Publ. 15, 1521E (10.2903/sp.efsa.2018.EN-1521) DOI
Probst C, Globig A, Knoll B, Conraths FJ, Depner K. 2017. Behaviour of free ranging wild boar towards their dead fellows: potential implications for the transmission of African swine fever. R. Soc. Open Sci. 4, 170054 (10.1098/rsos.170054) PubMed DOI PMC
Eble P, Hagenaars TJ, Weesendorp E, Quak S, Moonen-Leusen HW, Loeffen WLA. 2019. Transmission of African swine fever virus via carrier (survivor) pigs does occur. Vet. Microbiol. 237, 108345 (10.1016/j.vetmic.2019.06.018) PubMed DOI
Podgórski T, Scandura M, Jędrzejewska B. 2014. Next of kin next door—philopatry and socio-genetic population structure in wild boar. J. Zool. 294, 190–197. (10.1111/jzo.12167) DOI
Keeling MJ 1999. The effects of local spatial structure on epidemiological invasions. Proc. R. Soc. Lond. B 266, 859–867. (10.1098/rspb.1999.0716) PubMed DOI PMC
Ames GM, George DB, Hampson CP, Kanarek AR, McBee CD, Lockwood DR, Achter JD, Webb CT. 2011. Using network properties to predict disease dynamics on human contact networks. Proc. R. Soc. B 278, 3544–3550. (10.1098/rspb.2011.0290) PubMed DOI PMC
Risk of African swine fever virus transmission among wild boar and domestic pigs in Poland